Difference between revisions of "ApCoCoA-1:BB.LiftND"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
 
   <title>BB.LiftND</title>
 
   <title>BB.LiftND</title>
   <short_description>Computes the border basis scheme ideal generators obtained from lifting of ND neighbours.</short_description>
+
   <short_description>Computes the border basis scheme ideal generators obtained from lifting of next-door neighbours.</short_description>
 
    
 
    
 
<syntax>
 
<syntax>
Line 7: Line 7:
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
Computes the generators of the border basis scheme ideal I(B_O) that result from the lifting of next-door neighbours. The input is a list of terms OO (2nd element of type POLY). The output is a list of poly in the ring BBS=K[c_{ij}].
+
This command computes the generators of the border basis scheme ideal <tt>I(B_O)</tt> that result from the lifting of next-door (ND) neighbours.
 
<itemize>
 
<itemize>
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
+
   <item>@param <em>OO</em> A list of terms representing an order ideal. The second element is of type <tt>POLY</tt>.</item>
   <item>@return A list of generators of the border basis scheme ideal I(B_O) that results from the lifting of next-door neighbours in the border of OO. The polynomials will belong to the ring BBS=K[c_{ij}].</item>
+
   <item>@return A list of generators of the border basis scheme ideal. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item>
 
</itemize>
 
</itemize>
 
<example>
 
<example>

Revision as of 15:42, 8 July 2009

BB.LiftND

Computes the border basis scheme ideal generators obtained from lifting of next-door neighbours.

Syntax

BB.LiftND(OO:LIST):LIST

Description

This command computes the generators of the border basis scheme ideal I(B_O) that result from the lifting of next-door (ND) neighbours.

  • @param OO A list of terms representing an order ideal. The second element is of type POLY.

  • @return A list of generators of the border basis scheme ideal. The polynomials will belong to the ring BBS=K[c_{ij}].

Example

Use QQ[x,y], DegRevLex;
BB.LiftND([Poly(1), x, y, xy]);

[BBS :: c[1,2]c[2,1] + c[1,4]c[4,1] - c[1,3],
 BBS :: c[2,1]c[2,2] + c[2,4]c[4,1] + c[1,1] - c[2,3],
 BBS :: c[2,1]c[3,2] + c[3,4]c[4,1] - c[3,3],
 BBS :: c[2,1]c[4,2] + c[4,1]c[4,4] + c[3,1] - c[4,3],
 BBS :: c[1,1]c[3,2] + c[1,3]c[4,2] - c[1,4],
 BBS :: c[2,1]c[3,2] + c[2,3]c[4,2] - c[2,4],
 BBS :: c[3,1]c[3,2] + c[3,3]c[4,2] + c[1,2] - c[3,4],
 BBS :: c[3,2]c[4,1] + c[4,2]c[4,3] + c[2,2] - c[4,4]]
-------------------------------

BB.LiftAS

BB.LiftASViaServer

BB.LiftHomAS

BB.LiftNDViaServer

BB.LiftHomND