ApCoCoA-1:BB.HomBBscheme: Difference between revisions
From ApCoCoAWiki
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices | Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. | ||
<itemize> | <itemize> | ||
<item>@param <em>OO</em> A list of terms representing an order ideal.</item> | <item>@param <em>OO</em> A list of terms representing an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial.</item> | ||
<item>@return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].</item> | <item>@return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item> | ||
</itemize> | </itemize> | ||
</description> | </description> |
Revision as of 15:24, 8 July 2009
BB.HomBBscheme
Computes the defining equations of a homogeneous border basis scheme.
Syntax
BB.HomBBscheme(OO:LIST):IDEAL
Description
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices.
@param OO A list of terms representing an order ideal. The second element of OO must be a non-constant polynomial.
@return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].