Difference between revisions of "ApCoCoA-1:BB.GenMultMat"

From ApCoCoAWiki
Line 7: Line 7:
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
Computes the generic multiplication matrix for x[I] with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size <ref>Len</ref>(OO) x <ref>Len</ref>(OO) over the ring BBS=K[c_{ij}].
+
Computes the generic multiplication matrix for the <tt>I</tt>-th indeterminate with respect to an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial. The output is a matrix of size <ref>Len</ref>(OO) x <ref>Len</ref>(OO) over the ring <tt>BBS=K[c_{ij}]</tt>.
 
<itemize>
 
<itemize>
   <item>@param <em>I</em> The generic ultiplication matrix for the indeterminate x[I] will be computed.</item>
+
   <item>@param <em>I</em> An integer which specifies the indeterminate for which the generic multiplication matrix will be computed.</item>
 
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
 
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
   <item>@return The generic multiplication matrix for the indeterminate x[I] over the ring BBS=K[c_{ij}].</item>
+
   <item>@return The generic multiplication matrix.</item>
 
</itemize>
 
</itemize>
 
   </description>
 
   </description>

Revision as of 15:13, 8 July 2009

BB.GenMultMat

Computes a generic multiplication matrix.

Syntax

BB.GenMultMat(I:INT,OO:LIST):MAT

Description

Computes the generic multiplication matrix for the I-th indeterminate with respect to an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size Len(OO) x Len(OO) over the ring BBS=K[c_{ij}].

  • @param I An integer which specifies the indeterminate for which the generic multiplication matrix will be computed.

  • @param OO A list of terms representing an order ideal.

  • @return The generic multiplication matrix.