Difference between revisions of "ApCoCoA-1:BB.BBscheme"
From ApCoCoAWiki
Line 7: | Line 7: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS = K[c_{ij}]. | + | Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list <tt>OO</tt> of terms that specify an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial. The output is an ideal in the ring <tt>BBS = K[c_{ij}]</tt>. |
<itemize> | <itemize> | ||
<item>@param <em>OO</em> A list of terms representing an order ideal.</item> | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | ||
− | <item>@return A list of polynomials representing the defining equations of the border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].</item> | + | <item>@return A list of polynomials representing the defining equations of the border basis scheme. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item> |
</itemize> | </itemize> | ||
<example> | <example> |
Revision as of 14:45, 8 July 2009
BB.BBscheme
Computes the defining equations of a border basis scheme.
Syntax
BB.BBscheme(OO:LIST):IDEAL
Description
Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS = K[c_{ij}].
@param OO A list of terms representing an order ideal.
@return A list of polynomials representing the defining equations of the border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].
Example
Use QQ[x,y,z]; BB.BBscheme([1,x]); BBS :: Ideal(c[1,5]c[2,2] - c[1,4], c[1,2]c[1,5] - c[1,5]c[2,4] + c[1,4]c[2,5], c[2,2]c[2,5] + c[1,2] - c[2,4], c[1,5]c[2,2] - c[1,4], c[1,5]c[2,1] - c[1,3], c[1,1]c[1,5] - c[1,5]c[2,3] + c[1,3]c[2,5], c[2,1]c[2,5] + c[1,1] - c[2,3], c[1,5]c[2,1] - c[1,3], c[1,4]c[2,1] - c[1,3]c[2,2], c[1,2]c[1,3] - c[1,1]c[1,4] + c[1,4]c[2,3] - c[1,3]c[2,4], c[1,2]c[2,1] - c[1,1]c[2,2] + c[2,2]c[2,3] - c[2,1]c[2,4], c[1,4]c[2,1] - c[1,3]c[2,2]) -------------------------------