Difference between revisions of "ApCoCoA-1:BB.BBscheme"

From ApCoCoAWiki
Line 7: Line 7:
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS = K[c_{ij}].
+
Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list <tt>OO</tt> of terms that specify an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial. The output is an ideal in the ring <tt>BBS = K[c_{ij}]</tt>.
 
<itemize>
 
<itemize>
 
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
 
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
   <item>@return A list of polynomials representing the defining equations of the border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].</item>
+
   <item>@return A list of polynomials representing the defining equations of the border basis scheme. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item>
 
</itemize>
 
</itemize>
 
<example>
 
<example>

Revision as of 14:45, 8 July 2009

BB.BBscheme

Computes the defining equations of a border basis scheme.

Syntax

BB.BBscheme(OO:LIST):IDEAL

Description

Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS = K[c_{ij}].

  • @param OO A list of terms representing an order ideal.

  • @return A list of polynomials representing the defining equations of the border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].

Example

Use QQ[x,y,z];
BB.BBscheme([1,x]);
BBS :: Ideal(c[1,5]c[2,2] - c[1,4], c[1,2]c[1,5] - c[1,5]c[2,4] + c[1,4]c[2,5],
c[2,2]c[2,5] + c[1,2] - c[2,4], c[1,5]c[2,2] - c[1,4], c[1,5]c[2,1] - c[1,3],
c[1,1]c[1,5] - c[1,5]c[2,3] + c[1,3]c[2,5], c[2,1]c[2,5] + c[1,1] - c[2,3],
c[1,5]c[2,1] - c[1,3], c[1,4]c[2,1] - c[1,3]c[2,2],
c[1,2]c[1,3] - c[1,1]c[1,4] + c[1,4]c[2,3] - c[1,3]c[2,4],
c[1,2]c[2,1] - c[1,1]c[2,2] + c[2,2]c[2,3] - c[2,1]c[2,4], c[1,4]c[2,1] - c[1,3]c[2,2])
-------------------------------

BB.HomBBscheme