Difference between revisions of "ApCoCoA-1:DA.Sep"
From ApCoCoAWiki
Line 6: | Line 6: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectively. The seperand of F is just the initial of the derivative of F. | + | <ref>DA.Sep</ref> returns the separand of polynomial <tt>F</tt> wrt. the current differential term ordering, or the hereby induced ranking, respectively. The seperand of <tt>F</tt> is just the initial of the derivative of <tt>F</tt>. |
<itemize> | <itemize> | ||
<item>@param <em>F</em> A differential polynomial.</item> | <item>@param <em>F</em> A differential polynomial.</item> | ||
− | <item>@return The seperand of F wrt. to the current differential term ordering.</item> | + | <item>@return The seperand of <tt>F</tt> wrt. to the current differential term ordering.</item> |
</itemize> | </itemize> | ||
Revision as of 13:23, 7 July 2009
DA.Sep
Computes the separand of a differential polynomial.
Syntax
DA.Sep(F:POLY):POLY
Description
DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectively. The seperand of F is just the initial of the derivative of F.
@param F A differential polynomial.
@return The seperand of F wrt. to the current differential term ordering.
Example
Use QQ[x[1..2,0..20]]; Use QQ[x[1..2,0..20]], Ord(DA.DiffTO(<quotes>Lex</quotes>)); F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2]; G:=DA.Differentiate(F); DA.Initial(G); ------------------------------- 2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2] ------------------------------- DA.Sep(F); ------------------------------- 2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2] -------------------------------