Difference between revisions of "ApCoCoA-1:DA.DiffGB"

From ApCoCoAWiki
(Description update.)
Line 1: Line 1:
 
<command>
 
<command>
 
     <title>DA.DiffGB</title>
 
     <title>DA.DiffGB</title>
     <short_description>Calculates a differential Groebner basis.</short_description>
+
     <short_description>Computes a differential Groebner basis.</short_description>
 
<syntax>
 
<syntax>
 
DA.DiffGB(I:IDEAL):LIST
 
DA.DiffGB(I:IDEAL):LIST
 
</syntax>
 
</syntax>
 
<description>
 
<description>
Returns a differential Groebner basis of the ideal I which is differentially generated by G wrt. the current differential term ordering. This function only terminates if the ideal I is zero dimensional and has a finite differential Groebner basis.
+
Returns a differential Groebner basis of the ideal <tt>I</tt> which is differentially generated by a set of differential polynomials wrt. the current differential term ordering. This function only terminates if the ideal <tt>I</tt> is zero dimensional and has a finite differential Groebner basis.
 
<itemize>
 
<itemize>
 
<item>@param <em>I</em> A differential ideal.</item>
 
<item>@param <em>I</em> A differential ideal.</item>
<item>@return If terminating, a list of differential polynomials that form a differential Groebner basis of I.</item>
+
<item>@return If terminating, a list of differential polynomials that form a differential Groebner basis of <tt>I</tt>.</item>
 
</itemize>
 
</itemize>
 
<example>Use QQ[x[1..1,0..20]];
 
<example>Use QQ[x[1..1,0..20]];

Revision as of 12:40, 7 July 2009

DA.DiffGB

Computes a differential Groebner basis.

Syntax

DA.DiffGB(I:IDEAL):LIST

Description

Returns a differential Groebner basis of the ideal I which is differentially generated by a set of differential polynomials wrt. the current differential term ordering. This function only terminates if the ideal I is zero dimensional and has a finite differential Groebner basis.

  • @param I A differential ideal.

  • @return If terminating, a list of differential polynomials that form a differential Groebner basis of I.

Example

Use QQ[x[1..1,0..20]];
Use QQ[x[1..1,0..20]], Ord(DA.DiffTO(<quotes>Lex</quotes>));
DA.DiffGB([x[1,1]^4+x[1,0]]);
-------------------------------
[x[1,3] - 8x[1,1]x[1,2]^3, x[1,1]^2x[1,2]^2 + 1/4x[1,2], x[1,0]x[1,2] - 1/4x[1,1]^2, x[1,1]^4 + x[1,0]]
-------------------------------