Difference between revisions of "ApCoCoA-1:CharP.GBasisF4"
From ApCoCoAWiki
(Description update.) |
|||
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>Char2.GBasisF4</title> | <title>Char2.GBasisF4</title> | ||
− | <short_description>Computing a Groebner Basis of a given ideal in | + | <short_description>Computing a Groebner Basis of a given ideal in F_4.</short_description> |
<syntax> | <syntax> | ||
Char2.GBasisF4(Ideal:IDEAL):LIST | Char2.GBasisF4(Ideal:IDEAL):LIST | ||
Line 43: | Line 43: | ||
<key>GBasisF4</key> | <key>GBasisF4</key> | ||
<key>char2.GBasisF4</key> | <key>char2.GBasisF4</key> | ||
+ | <key>finite field</key> | ||
<wiki-category>Package_char2</wiki-category> | <wiki-category>Package_char2</wiki-category> | ||
</command> | </command> |
Revision as of 13:03, 28 April 2009
Char2.GBasisF4
Computing a Groebner Basis of a given ideal in F_4.
Syntax
Char2.GBasisF4(Ideal:IDEAL):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This command computes a Groebner basis in the field F_4 = (Z/(2))[x]/(x^2 + x +1).
@param Ideal An Ideal in a Ring over Z, where the elements 0,...,3 represent the field's elements. For short, the binary representation of the number represents the coefficient vector if the polynomial in the field, e.g. 11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0. So the number 11 corresponds to the polynomial x^3 + x + 1.
@return A Groebner Basis of the given ideal.
See also
Introduction to Groebner Basis in CoCoA
Representation of finite fields