Difference between revisions of "ApCoCoA-1:BB.NDgens"
Line 2: | Line 2: | ||
<title>BB.NDgens</title> | <title>BB.NDgens</title> | ||
<short_description>Compute the generators of the vanishing ideal of a border basis scheme.</short_description> | <short_description>Compute the generators of the vanishing ideal of a border basis scheme.</short_description> | ||
− | <syntax>BB.NDgens(K:INT,OO:LIST):LIST</syntax> | + | |
+ | <syntax> | ||
+ | BB.NDgens(K:INT,OO:LIST):LIST | ||
+ | </syntax> | ||
<description> | <description> | ||
Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of <ref>BB.NDneighbors</ref>(OO). The inputs are an integer K in the range 1..<ref>Len</ref>(<ref>BB.NDneighbors</ref>(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring BBS=K[c_{ij}]. | Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of <ref>BB.NDneighbors</ref>(OO). The inputs are an integer K in the range 1..<ref>Len</ref>(<ref>BB.NDneighbors</ref>(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring BBS=K[c_{ij}]. |
Revision as of 14:50, 24 April 2009
BB.NDgens
Compute the generators of the vanishing ideal of a border basis scheme.
Syntax
BB.NDgens(K:INT,OO:LIST):LIST
Description
Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of BB.NDneighbors(OO). The inputs are an integer K in the range 1..Len(BB.NDneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring BBS=K[c_{ij}].
@param K The generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.NDneighbors(OO) will be computed.
@param OO A list of terms representing an order ideal.
@return A list of generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.NDneighbors(OO). The polynomials will belong to the ring BBS=K[c_{ij}].
Example
Use QQ[x,y,z]; BB.NDgens(1, [1,x]); [BBS :: c[1,5]c[2,1] - c[1,3], BBS :: c[2,1]c[2,5] + c[1,1] - c[2,3]] -------------------------------