Difference between revisions of "ApCoCoA-1:BB.GenericBB"
From ApCoCoAWiki
Line 2: | Line 2: | ||
<title>BB.GenericBB</title> | <title>BB.GenericBB</title> | ||
<short_description>Compute a generic border basis.</short_description> | <short_description>Compute a generic border basis.</short_description> | ||
− | <syntax>BB.GenericBB(OO:LIST):LIST</syntax> | + | |
+ | <syntax> | ||
+ | BB.GenericBB(OO:LIST):LIST | ||
+ | </syntax> | ||
<description> | <description> | ||
Computes the <quotes>generic</quotes> border basis w.r.t. an order ideal OO i.e. the polynomials g_j = b_j - \sum_i c_{ij} * t_i. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a <quotes>universal family ring</quotes> UF where UF=K[x_1,..,x_n,c_{ij}]. | Computes the <quotes>generic</quotes> border basis w.r.t. an order ideal OO i.e. the polynomials g_j = b_j - \sum_i c_{ij} * t_i. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a <quotes>universal family ring</quotes> UF where UF=K[x_1,..,x_n,c_{ij}]. |
Revision as of 14:46, 24 April 2009
BB.GenericBB
Compute a generic border basis.
Syntax
BB.GenericBB(OO:LIST):LIST
Description
Computes the "generic" border basis w.r.t. an order ideal OO i.e. the polynomials g_j = b_j - \sum_i c_{ij} * t_i. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a "universal family ring" UF where UF=K[x_1,..,x_n,c_{ij}].
@param OO A list of terms representing an order ideal.
@return A list of generic border basis polynomials w.r.t. to an order ideal OO. The polynomials will belong to the ring UF=K[x_1,..,x_n,c_{ij}].