Difference between revisions of "ApCoCoA-1:BB.GenericBB"

From ApCoCoAWiki
Line 2: Line 2:
 
   <title>BB.GenericBB</title>
 
   <title>BB.GenericBB</title>
 
   <short_description>Compute a generic border basis.</short_description>
 
   <short_description>Compute a generic border basis.</short_description>
   <syntax>BB.GenericBB(OO:LIST):LIST</syntax>
+
    
 +
<syntax>
 +
BB.GenericBB(OO:LIST):LIST
 +
</syntax>
 
   <description>
 
   <description>
 
Computes the <quotes>generic</quotes> border basis w.r.t. an order ideal OO i.e. the polynomials g_j = b_j - \sum_i c_{ij} * t_i. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a <quotes>universal family ring</quotes> UF where UF=K[x_1,..,x_n,c_{ij}].
 
Computes the <quotes>generic</quotes> border basis w.r.t. an order ideal OO i.e. the polynomials g_j = b_j - \sum_i c_{ij} * t_i. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a <quotes>universal family ring</quotes> UF where UF=K[x_1,..,x_n,c_{ij}].

Revision as of 14:46, 24 April 2009

BB.GenericBB

Compute a generic border basis.

Syntax

BB.GenericBB(OO:LIST):LIST

Description

Computes the "generic" border basis w.r.t. an order ideal OO i.e. the polynomials g_j = b_j - \sum_i c_{ij} * t_i. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a "universal family ring" UF where UF=K[x_1,..,x_n,c_{ij}].

  • @param OO A list of terms representing an order ideal.

  • @return A list of generic border basis polynomials w.r.t. to an order ideal OO. The polynomials will belong to the ring UF=K[x_1,..,x_n,c_{ij}].