Difference between revisions of "ApCoCoA-1:BB.GenHomMultMat"
From ApCoCoAWiki
Line 2: | Line 2: | ||
<title>BB.GenHomMultMat</title> | <title>BB.GenHomMultMat</title> | ||
<short_description>Compute a generic homogeneous multiplication matrix.</short_description> | <short_description>Compute a generic homogeneous multiplication matrix.</short_description> | ||
− | <syntax>BB.GenHomMultMat(I:INT,OO:LIST):MAT</syntax> | + | |
+ | <syntax> | ||
+ | BB.GenHomMultMat(I:INT,OO:LIST):MAT | ||
+ | </syntax> | ||
<description> | <description> | ||
Computes the generic homogeneous multiplication matrix for x[I] with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size <ref>Len</ref>(OO) x <ref>Len</ref>(OO) over the ring BBS=K[c_{ij}]. | Computes the generic homogeneous multiplication matrix for x[I] with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size <ref>Len</ref>(OO) x <ref>Len</ref>(OO) over the ring BBS=K[c_{ij}]. |
Revision as of 14:45, 24 April 2009
BB.GenHomMultMat
Compute a generic homogeneous multiplication matrix.
Syntax
BB.GenHomMultMat(I:INT,OO:LIST):MAT
Description
Computes the generic homogeneous multiplication matrix for x[I] with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size Len(OO) x Len(OO) over the ring BBS=K[c_{ij}].
@param I The generic homogeneous multiplication matrix for the indeterminate x[I] will be computed.
@param OO A list of terms representing an order ideal.
@return The generic homogeneous multiplication matrix for the indeterminate x[I] over the ring BBS=K[c_{ij}].