Difference between revisions of "ApCoCoA-1:BB.NDgens"
(Description update.) |
|||
Line 18: | Line 18: | ||
</description> | </description> | ||
<types> | <types> | ||
− | |||
− | |||
− | |||
<type>borderbasis</type> | <type>borderbasis</type> | ||
</types> | </types> | ||
+ | |||
<see>BB.ASgens</see> | <see>BB.ASgens</see> | ||
<see>BB.HomASgens</see> | <see>BB.HomASgens</see> | ||
<see>BB.HomNDgens</see> | <see>BB.HomNDgens</see> | ||
+ | |||
<key>NDgens</key> | <key>NDgens</key> | ||
<key>BB.NDgens</key> | <key>BB.NDgens</key> |
Revision as of 13:48, 24 April 2009
BB.NDgens
Compute the generators of the vanishing ideal of a border basis scheme.
Syntax
BB.NDgens(K:INT,OO:LIST):LIST
Description
Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of BB.NDneighbors(OO). The inputs are an integer K in the range 1..Len(BB.NDneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring BBS=K[c_{ij}].
@param K The generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.NDneighbors(OO) will be computed.
@param OO A list of terms representing an order ideal.
@return A list of generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.NDneighbors(OO). The polynomials will belong to the ring BBS=K[c_{ij}].
Example
Use QQ[x,y,z]; BB.NDgens(1, [1,x]); [BBS :: c[1,5]c[2,1] - c[1,3], BBS :: c[2,1]c[2,5] + c[1,1] - c[2,3]] -------------------------------