Difference between revisions of "ApCoCoA-1:BB.ASgens"

From ApCoCoAWiki
(Types section update.)
Line 21: Line 21:
 
   </description>
 
   </description>
 
   <types>
 
   <types>
    <type>list</type>
 
    <type>int</type>
 
    <type>integer</type>
 
 
     <type>borderbasis</type>
 
     <type>borderbasis</type>
 
   </types>
 
   </types>

Revision as of 13:34, 24 April 2009

BB.ASgens

Compute the generators of the vanishing ideal of a border basis scheme.

Syntax

BB.ASgens(K:INT,OO:LIST):LIST

Description

Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.ASneighbors(OO). The inputs are an integer K in the range 1..Len(BB.ASneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring BBS=K[c_{ij}].

  • @param K The generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.ASneighbors(OO) will be computed.

  • @param OO A list of terms representing an order ideal.

  • @return A list of generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.ASneighbors(OO). The polynomials will belong to the ring BBS=K[c_{ij}].

Example

Use QQ[x,y,z];
BB.ASgens(1, [1,x,y,z]);
[BBS :: c[1,5]c[2,1] - c[1,3]c[2,2] + c[1,4]c[3,1] - c[1,2]c[3,2] + c[1,2]c[4,1] - c[1,1]c[4,2],
BBS :: c[2,2]c[2,3] - c[2,1]c[2,5] - c[2,4]c[3,1] + c[2,2]c[3,2] - c[2,2]c[4,1] + c[2,1]c[4,2],
BBS :: c[3,2]^2 + c[2,2]c[3,3] - c[3,1]c[3,4] - c[2,1]c[3,5] - c[3,2]c[4,1] + c[3,1]c[4,2] - c[1,1],
BBS :: c[3,2]c[4,2] + c[2,2]c[4,3] - c[3,1]c[4,4] - c[2,1]c[4,5] + c[1,2]]
-------------------------------

BB.HomASgens

BB.HomNDgens

BB.NDgens