Difference between revisions of "ApCoCoA-1:Weyl.WRGB"

From ApCoCoAWiki
Line 6: Line 6:
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
 +
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 +
<par/>
 
This function converts Groebner basis GB computed by implementation in CoCoALib into reduced Groebner Basis. If GB is not a Groebner basis then the output will not be reduced Groebner basis. In fact, this function reduces a list GB of Weyl polynomals using <ref>Weyl.WNR</ref> into a new list L such that Ideal(L) = Ideal(GB).
 
This function converts Groebner basis GB computed by implementation in CoCoALib into reduced Groebner Basis. If GB is not a Groebner basis then the output will not be reduced Groebner basis. In fact, this function reduces a list GB of Weyl polynomals using <ref>Weyl.WNR</ref> into a new list L such that Ideal(L) = Ideal(GB).
 
This function is used inside the function <ref>Weyl.WGB</ref> to get a list of minimal Groebner basis elements for the ideal I.
 
This function is used inside the function <ref>Weyl.WGB</ref> to get a list of minimal Groebner basis elements for the ideal I.
Line 15: Line 17:
  
 
<example>
 
<example>
A1::=QQ[x,d]; --Define appropraite ring
+
A1::=QQ[x,d]; --Define appropriate ring
 
Use A1;
 
Use A1;
 
L:=[x,d,1]
 
L:=[x,d,1]
Line 27: Line 29:
 
       <see>Weyl.WGB</see>
 
       <see>Weyl.WGB</see>
 
       <see>Introduction to Groebner Basis in CoCoA</see>
 
       <see>Introduction to Groebner Basis in CoCoA</see>
 +
      <see>Introduction to CoCoAServer</see>
 
     </seealso>
 
     </seealso>
 
     <types>
 
     <types>

Revision as of 12:19, 24 April 2009

Weyl.WRGB

Reduced Groebner basis of an ideal I in Weyl algebra A_n.

Syntax

Weyl.WRGB(GB:LIST):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

This function converts Groebner basis GB computed by implementation in CoCoALib into reduced Groebner Basis. If GB is not a Groebner basis then the output will not be reduced Groebner basis. In fact, this function reduces a list GB of Weyl polynomals using Weyl.WNR into a new list L such that Ideal(L) = Ideal(GB).

This function is used inside the function Weyl.WGB to get a list of minimal Groebner basis elements for the ideal I.

  • @param GB Groebner Basis of an ideal in the Weyl algebra.

  • @result The reduced Groebner Basis of the given ideal.

Example

A1::=QQ[x,d];	--Define appropriate ring
Use A1;
L:=[x,d,1]
Weyl.WRGB(L);
[1]
-------------------------------

See also

Weyl.WNormalForm

Weyl.WGB

Introduction to Groebner Basis in CoCoA

Introduction to CoCoAServer