Difference between revisions of "ApCoCoA-1:Num.IsAVI"

From ApCoCoAWiki
Line 1: Line 1:
 
   <command>
 
   <command>
 
     <title>Num.IsAVI</title>
 
     <title>Num.IsAVI</title>
     <short_description>Checks if a given set of polynomials vanishes at a given set of points</short_description>
+
     <short_description>Checks if a given set of polynomials vanishes at a given set of points.</short_description>
 
<syntax>
 
<syntax>
 
Num.IsAVI(Polys:LIST, Points:MAT, Epsilon:RAT):[A:INT or RAT,B:INT or RAT];
 
Num.IsAVI(Polys:LIST, Points:MAT, Epsilon:RAT):[A:INT or RAT,B:INT or RAT];
Line 34: Line 34:
 
     <key>Num.IsAvi</key>
 
     <key>Num.IsAvi</key>
 
     <key>IsAvi</key>
 
     <key>IsAvi</key>
 +
    <key>numerical.isavi</key>
 
     <wiki-category>Package_numerical</wiki-category>
 
     <wiki-category>Package_numerical</wiki-category>
 
   </command>
 
   </command>

Revision as of 11:55, 24 April 2009

Num.IsAVI

Checks if a given set of polynomials vanishes at a given set of points.

Syntax

Num.IsAVI(Polys:LIST, Points:MAT, Epsilon:RAT):[A:INT or RAT,B:INT or RAT];

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Checks if a set of polynomials vanishes at a set of points epsilon approximately. The polynomials are preprocessed first to have norm 1.

  • @param Polys A list of polynomials.

  • @param Points A matrix containing the points to check.

  • @param Epsilon Rational number

  • @return A number A which specifies how well the points vanish on average and a number B which contains the maximal evaluation value

Example

Num.IsAVI([x[1]+1,x[1]^2],[[0]],0.1);
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[1/2, 1]
-------------------------------

See also

Introduction to CoCoAServer