Difference between revisions of "ApCoCoA-1:BB.NDgens"
(Example section update.) |
(Description update.) |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
− | + | <title>BB.NDgens</title> | |
− | + | <short_description>Compute the generators of the vanishing ideal of a border basis scheme.</short_description> | |
− | <syntax> | + | <syntax>BB.NDgens(K:INT,OO:LIST):LIST</syntax> |
− | BB.NDgens(K:INT,OO:LIST):LIST | + | <description> |
− | </syntax> | + | Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of <ref>BB.NDneighbors</ref>(OO). The inputs are an integer K in the range 1..<ref>Len</ref>(<ref>BB.NDneighbors</ref>(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring BBS=K[c_{ij}]. |
− | |||
− | Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of NDneighbors(OO). The inputs are an integer K in the range 1..Len(NDneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring | ||
<itemize> | <itemize> | ||
− | <item>@param <em>K</em> The generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by NDneighbors(OO) will be computed.</item> | + | <item>@param <em>K</em> The generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by <ref>BB.NDneighbors</ref>(OO) will be computed.</item> |
<item>@param <em>OO</em> A list of terms representing an order ideal.</item> | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | ||
− | <item>@return A list of generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by NDneighbors(OO). The polynomials will belong to the ring BBS=K[c_{ij}].</item> | + | <item>@return A list of generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by <ref>BB.NDneighbors</ref>(OO). The polynomials will belong to the ring BBS=K[c_{ij}].</item> |
</itemize> | </itemize> | ||
<example> | <example> | ||
Line 18: | Line 16: | ||
------------------------------- | ------------------------------- | ||
</example> | </example> | ||
− | + | </description> | |
− | <types> | + | <types> |
− | <type>list</type> | + | <type>list</type> |
− | <type>int</type> | + | <type>int</type> |
− | <type>integer</type> | + | <type>integer</type> |
− | </types> | + | </types> |
− | + | <see>BB.ASgens</see> | |
− | + | <see>BB.HomASgens</see> | |
− | + | <see>BB.HomNDgens</see> | |
− | + | <key>NDgens</key> | |
− | + | <key>BB.NDgens</key> | |
− | + | <key>borderbasis.NDgens</key> | |
− | + | <wiki-category>Package_borderbasis</wiki-category> | |
</command> | </command> |
Revision as of 11:35, 24 April 2009
BB.NDgens
Compute the generators of the vanishing ideal of a border basis scheme.
Syntax
BB.NDgens(K:INT,OO:LIST):LIST
Description
Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of BB.NDneighbors(OO). The inputs are an integer K in the range 1..Len(BB.NDneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring BBS=K[c_{ij}].
@param K The generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.NDneighbors(OO) will be computed.
@param OO A list of terms representing an order ideal.
@return A list of generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.NDneighbors(OO). The polynomials will belong to the ring BBS=K[c_{ij}].
Example
Use QQ[x,y,z]; BB.NDgens(1, [1,x]); [BBS :: c[1,5]c[2,1] - c[1,3], BBS :: c[2,1]c[2,5] + c[1,1] - c[2,3]] -------------------------------