ApCoCoA-1:BB.GenMultMat: Difference between revisions
From ApCoCoAWiki
Types section update. |
Description update. |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BB.GenMultMat</title> | |||
<short_description>Compute a generic multiplication matrix.</short_description> | |||
<syntax> | <syntax>BB.GenMultMat(I:INT,OO:LIST):MAT</syntax> | ||
BB.GenMultMat(I:INT,OO:LIST):MAT | <description> | ||
</syntax> | Computes the generic multiplication matrix for x[I] with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size <ref>Len</ref>(OO) x <ref>Len</ref>(OO) over the ring BBS=K[c_{ij}]. | ||
Computes the generic multiplication matrix for | |||
<itemize> | <itemize> | ||
<item>@param <em>I</em> The generic ultiplication matrix for the indeterminate x[I] will be computed.</item> | <item>@param <em>I</em> The generic ultiplication matrix for the indeterminate x[I] will be computed.</item> | ||
Line 12: | Line 10: | ||
<item>@return The generic multiplication matrix for the indeterminate x[I] over the ring BBS=K[c_{ij}].</item> | <item>@return The generic multiplication matrix for the indeterminate x[I] over the ring BBS=K[c_{ij}].</item> | ||
</itemize> | </itemize> | ||
</description> | |||
<types> | <types> | ||
<type>list</type> | <type>list</type> | ||
<type>int</type> | <type>int</type> | ||
<type>integer</type> | <type>integer</type> | ||
</types> | </types> | ||
<key>GenMultMat</key> | |||
<key>BB.GenMultMat</key> | |||
<key>borderbasis.GenMultMat</key> | |||
<wiki-category>Package_borderbasis</wiki-category> | |||
</command> | </command> |
Revision as of 11:22, 24 April 2009
BB.GenMultMat
Compute a generic multiplication matrix.
Syntax
BB.GenMultMat(I:INT,OO:LIST):MAT
Description
Computes the generic multiplication matrix for x[I] with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size Len(OO) x Len(OO) over the ring BBS=K[c_{ij}].
@param I The generic ultiplication matrix for the indeterminate x[I] will be computed.
@param OO A list of terms representing an order ideal.
@return The generic multiplication matrix for the indeterminate x[I] over the ring BBS=K[c_{ij}].