Difference between revisions of "ApCoCoA-1:BB.BBscheme"
From ApCoCoAWiki
(Example section update.) |
(Description update.) |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
− | + | <title>BB.BBscheme</title> | |
− | + | <short_description>Compute the defining equations of a border basis scheme.</short_description> | |
− | <syntax> | + | <syntax>BB.BBscheme(OO:LIST):IDEAL</syntax> |
− | BB.BBscheme(OO:LIST):IDEAL | + | <description> |
− | </syntax> | + | Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS = K[c_{ij}]. |
− | |||
− | Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring | ||
<itemize> | <itemize> | ||
<item>@param <em>OO</em> A list of terms representing an order ideal.</item> | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | ||
Line 22: | Line 20: | ||
------------------------------- | ------------------------------- | ||
</example> | </example> | ||
− | + | </description> | |
− | <types> | + | <types> |
− | <type>list</type> | + | <type>list</type> |
− | </types> | + | </types> |
− | + | <see>BB.HomBBscheme</see> | |
− | + | <key>BBscheme</key> | |
− | + | <key>BB.BBscheme</key> | |
− | + | <key>borderbasis.BBscheme</key> | |
− | + | <wiki-category>Package_borderbasis</wiki-category> | |
</command> | </command> |
Revision as of 10:53, 24 April 2009
BB.BBscheme
Compute the defining equations of a border basis scheme.
Syntax
BB.BBscheme(OO:LIST):IDEAL
Description
Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS = K[c_{ij}].
@param OO A list of terms representing an order ideal.
@return A list of polynomials representing the defining equations of the border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].
Example
Use QQ[x,y,z]; BB.BBscheme([1,x]); BBS :: Ideal(c[1,5]c[2,2] - c[1,4], c[1,2]c[1,5] - c[1,5]c[2,4] + c[1,4]c[2,5], c[2,2]c[2,5] + c[1,2] - c[2,4], c[1,5]c[2,2] - c[1,4], c[1,5]c[2,1] - c[1,3], c[1,1]c[1,5] - c[1,5]c[2,3] + c[1,3]c[2,5], c[2,1]c[2,5] + c[1,1] - c[2,3], c[1,5]c[2,1] - c[1,3], c[1,4]c[2,1] - c[1,3]c[2,2], c[1,2]c[1,3] - c[1,1]c[1,4] + c[1,4]c[2,3] - c[1,3]c[2,4], c[1,2]c[2,1] - c[1,1]c[2,2] + c[2,2]c[2,3] - c[2,1]c[2,4], c[1,4]c[2,1] - c[1,3]c[2,2]) -------------------------------