Difference between revisions of "ApCoCoA-1:BB.NDgens"

From ApCoCoAWiki
(Types section update.)
(Example section update.)
Line 13: Line 13:
 
</itemize>
 
</itemize>
 
<example>
 
<example>
Use Q[x,y,z];
+
Use QQ[x,y,z];
 
BB.NDgens(1, [1,x]);
 
BB.NDgens(1, [1,x]);
 
[BBS :: c[1,5]c[2,1] - c[1,3], BBS :: c[2,1]c[2,5] + c[1,1] - c[2,3]]
 
[BBS :: c[1,5]c[2,1] - c[1,3], BBS :: c[2,1]c[2,5] + c[1,1] - c[2,3]]

Revision as of 13:11, 23 April 2009

BB.NDgens

Compute the generators of the vanishing ideal of a border basis scheme.

Syntax

BB.NDgens(K:INT,OO:LIST):LIST

Description

Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of NDneighbors(OO). The inputs are an integer K in the range 1..Len(NDneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring <formula>BBS=K[c_{ij}]</formula>.

  • @param K The generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by NDneighbors(OO) will be computed.

  • @param OO A list of terms representing an order ideal.

  • @return A list of generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by NDneighbors(OO). The polynomials will belong to the ring BBS=K[c_{ij}].

Example

Use QQ[x,y,z];
BB.NDgens(1, [1,x]);
[BBS :: c[1,5]c[2,1] - c[1,3], BBS :: c[2,1]c[2,5] + c[1,1] - c[2,3]]
-------------------------------

BB.ASgens

BB.HomASgens

BB.HomNDgens