Difference between revisions of "ApCoCoA-1:Weyl.WDim"
From ApCoCoAWiki
(Change Wiki-category) |
|||
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>Weyl.WDim</title> | <title>Weyl.WDim</title> | ||
− | <short_description>Computes the dimension ideal I in Weyl algebra <math>A_n</math>.</short_description> | + | <short_description>Computes the dimension of an ideal I in Weyl algebra <math>A_n</math>.</short_description> |
<syntax> | <syntax> | ||
Weyl.WDim(I:IDEAL):INT | Weyl.WDim(I:IDEAL):INT | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | + | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | |
+ | <par/> | ||
+ | This function computes the dimension of an Ideal <tt>I = (f_1,f_2, ..., f_r)</tt> which represents the module <tt>A_n/I</tt> where every generator <tt>f_i</tt> should be a Weyl polynomial in Normal form. This dimension of I is equal to the dimension of the associated graded module with respect to the Bernstein filtration. | ||
− | + | <itemize> | |
+ | <item>@param <em>I</em> An ideal in the Weyl algebra.</item> | ||
+ | <item>@return The dimension of the given ideal.</item> | ||
+ | </itemize> | ||
<example> | <example> | ||
Line 51: | Line 56: | ||
<types> | <types> | ||
<type>cocoaserver</type> | <type>cocoaserver</type> | ||
+ | <type>ideal</type> | ||
</types> | </types> | ||
<key>weyl.wdim</key> | <key>weyl.wdim</key> | ||
+ | <key>wdim</key> | ||
<wiki-category>Package_weyl</wiki-category> | <wiki-category>Package_weyl</wiki-category> | ||
</command> | </command> |
Revision as of 12:19, 23 April 2009
Weyl.WDim
Computes the dimension of an ideal I in Weyl algebra .
Syntax
Weyl.WDim(I:IDEAL):INT
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function computes the dimension of an Ideal I = (f_1,f_2, ..., f_r) which represents the module A_n/I where every generator f_i should be a Weyl polynomial in Normal form. This dimension of I is equal to the dimension of the associated graded module with respect to the Bernstein filtration.
@param I An ideal in the Weyl algebra.
@return The dimension of the given ideal.
Example
W3::=ZZ/(7)[x[1..3],d[1..3]]; Use W3; Cpu time = 0.00, User time = 0 ------------------------------- F1:=-d[1]^3d[2]^5d[3]^5+x[2]^5; F2:=-3x[2]d[2]^5d[3]^5+x[2]d[1]^3; F3:=-2d[1]^4d[2]^5-x[1]d[2]^7+x[3]^3d[3]^5; I:=Ideal(F1,F2,F3); Weyl.WDim(I); -- CoCoAServer: computing Cpu Time = 2.36 ------------------------------- 2 -------------------------------
Example
A3::=QQ[x[1..2],d[1..2]]; Use A3; ------------------------------- I:=Ideal(x[1]d[1] + 2x[2]d[2] - 5, d[1]^2 - d[2]); ------------------------------- Weyl.WDim(I); -- CoCoAServer: computing Cpu Time = 0 ------------------------------- 2 ------------------------------- -- If the dimension is ZERO, -1 will be returned Weyl.WDim(Ideal(x[1],d[1])); -- CoCoAServer: computing Cpu Time = 0 ------------------------------- -1 -------------------------------
See also