Difference between revisions of "ApCoCoA-1:Latte.Maximize"

From ApCoCoAWiki
m
Line 1: Line 1:
 
<command>
 
<command>
 
<title>Latte.Maximize</title>
 
<title>Latte.Maximize</title>
<short_description> Maximizes the objective function over a polyhedral P given by a number of linear constraints</short_description>
+
<short_description>Maximizes the objective function over a polyhedral P given by a number of linear constraints</short_description>
 
<syntax>
 
<syntax>
 
Latte.Maximize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):INT
 
Latte.Maximize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):INT
Line 7: Line 7:
  
 
<description>
 
<description>
{{ApCoCoAServer}}
+
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
  
 
<itemize>
 
<itemize>
Line 31: Line 31:
 
</types>
 
</types>
 
<see>GLPK.LPSolve</see>
 
<see>GLPK.LPSolve</see>
<key>LattE</key>
+
 
 +
<key>Latte</key>
 
<key>Maximize</key>
 
<key>Maximize</key>
 
<key>Latte.Maximize</key>
 
<key>Latte.Maximize</key>
<key>latte.Maximize</key>
 
 
<wiki-category>Package_latte</wiki-category>
 
<wiki-category>Package_latte</wiki-category>
 
</command>
 
</command>

Revision as of 11:56, 23 April 2009

Latte.Maximize

Maximizes the objective function over a polyhedral P given by a number of linear constraints

Syntax

Latte.Maximize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):INT

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

  • @param Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints

  • @param LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints

  • @param GreaterEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints

  • @param ObjectiveF: A linear Polynomial

  • @return The optimal value of the objective function

Example

Use S ::= QQ[x,y];
Equations := [];
LesserEq := [x-1, x+y-1];
GreaterEq := [x,y];
ObjectiveF := x + z;
Latte.Maximize(Equations, LesserEq, GreaterEq, ObjectiveF);


GLPK.LPSolve