Difference between revisions of "ApCoCoA-1:DA.Sep"

From ApCoCoAWiki
m (ApCoCoA:Diffalg.Sep moved to ApCoCoA:DA.Sep: To comply with style principles.)
Line 11: Line 11:
  
 
<itemize>
 
<itemize>
<item>@param F A differential polynomial.</item>
+
<item>@param <em>F</em> A differential polynomial.</item>
 
<item>@return The seperand of F wrt. to the current differential term ordering.</item>
 
<item>@return The seperand of F wrt. to the current differential term ordering.</item>
 
</itemize>
 
</itemize>
Line 39: Line 39:
 
<see>DA.Differentiate</see>
 
<see>DA.Differentiate</see>
 
<see>DA.Initial</see>
 
<see>DA.Initial</see>
 +
 
<key>Sep</key>
 
<key>Sep</key>
 
<key>DA.Sep</key>
 
<key>DA.Sep</key>

Revision as of 11:10, 23 April 2009

DA.Sep

Computes the separand of a differential polynomial.

Syntax

DA.Sep(F:POLY):POLY

Description

DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectivly.

The seperand of F is just the initial of the derivative of F.

  • @param F A differential polynomial.

  • @return The seperand of F wrt. to the current differential term ordering.

Example

Use Q[x[1..2,0..20]];
Use Q[x[1..2,0..20]], Ord(DA.DiffTO("Lex"));

F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2];
G:=DA.Differentiate(F);
DA.Initial(G);
-------------------------------
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
-------------------------------
DA.Sep(F);
-------------------------------
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
-------------------------------


DA.DiffTO

DA.Differentiate

DA.Initial