Difference between revisions of "ApCoCoA-1:BB.LiftNDViaServer"
(Added parameter and return value list.) |
(Key and see section update.) |
||
Line 39: | Line 39: | ||
</example> | </example> | ||
</description> | </description> | ||
− | |||
− | |||
− | |||
<see>BB.LiftAS</see> | <see>BB.LiftAS</see> | ||
<see>BB.LiftASViaServer</see> | <see>BB.LiftASViaServer</see> | ||
Line 47: | Line 44: | ||
<see>BB.LiftND</see> | <see>BB.LiftND</see> | ||
<see>BB.LiftHomND</see> | <see>BB.LiftHomND</see> | ||
+ | <key>LiftNDViaServer</key> | ||
+ | <key>BB.LiftNDViaServer</key> | ||
+ | <key>borderbasis.LiftNDViaServer</key> | ||
<wiki-category>Package_borderbasis</wiki-category> | <wiki-category>Package_borderbasis</wiki-category> | ||
</command> | </command> |
Revision as of 18:53, 22 April 2009
BB.LiftNDViaServer
Compute the border basis scheme ideal generators obtained from lifting of ND neighbors.
Syntax
BB.LiftNDViaServer(OO:LIST,Border:LIST,HomogeneousLift:BOOL):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them.
If HomogeneousLift is set to False, the generators of the border basis scheme ideal <formula>I(\mathbb{B}_\mathcal{O})</formula> that result from the lifting of next-door neighbors will computed by using the ApCoCoAServer. The input is a list of terms OO representing an order ideal and a list of terms Border representing the border of the order ideal. If HomogeneousLift is set to True, generators of <formula>I(\mathbb{B}^{\textrm{hom}}_\mathcal{O})</formula> will be computed instead. The output is a list of polynomials in the ring <formula>BBS=K[c_{ij}]</formula>.
@param OO A list of terms representing an order ideal.
@param Border A list of terms representing the border of OO
@param Homogeneous Set to TRUE if you want to compute the generators of the homogeneous border basis scheme.
@return A list of generators of the border basis scheme ideal I(B_O) that results from the lifting of next-door neighbors. The polynomials will belong to the ring BBS=K[c_{ij}].
Example
Use Q[x,y], DegRevLex; BB.LiftNDViaServer([Poly(1), x, y, xy], [y^2, x^2, xy^2, x^2y], False); ------------------------------- [BBS :: c[2,1]c[4,2] + c[4,1]c[4,4] + c[3,1] - c[4,3], BBS :: c[2,1]c[2,2] + c[2,4]c[4,1] + c[1,1] - c[2,3], BBS :: c[2,1]c[3,2] + c[3,4]c[4,1] - c[3,3], BBS :: c[1,2]c[2,1] + c[1,4]c[4,1] - c[1,3], BBS :: c[3,2]c[4,1] + c[4,2]c[4,3] + c[2,2] - c[4,4], BBS :: c[2,1]c[3,2] + c[2,3]c[4,2] - c[2,4], BBS :: c[3,1]c[3,2] + c[3,3]c[4,2] + c[1,2] - c[3,4], BBS :: c[1,1]c[3,2] + c[1,3]c[4,2] - c[1,4]] ------------------------------- Use Q[x,y,z], DegRevLex; BB.LiftNDViaServer([Poly(1), x, y, xy], [z, yz, xz, y^2, x^2, xyz, xy^2, x^2y], True); ------------------------------- [BBS :: c[3,1]c[4,4] + c[2,1] - c[4,2], BBS :: c[2,1]c[4,5] + c[3,1] - c[4,3]] -------------------------------