Difference between revisions of "ApCoCoA-1:Num.EigenValuesAndVectors"
Line 44: | Line 44: | ||
</seealso> | </seealso> | ||
<types> | <types> | ||
− | <type> | + | <type>apcocoaserver</type> |
+ | <type>matrix</type> | ||
</types> | </types> | ||
<key>Num.EigenValuesAndVectors</key> | <key>Num.EigenValuesAndVectors</key> |
Revision as of 15:59, 22 April 2009
Numerical.EigenValuesAndVectors
Computes the eigenvalues and eigenvectors of a matrix
Syntax
Num.EigenValuesAndVectors(A:Matrix):[B:Matrix, C:Matrix, D:Matrix]
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them. Please also note that you will have to use an ApCoCoAServer with enabled BLAS/LAPACK support.
This function returns a list of three matrices, containing numerical approximation to A's eigenvalues and (right hand) eigenvectors.
The input matrix A has to be a square matrix!
The output [B:Matrix, C:Matrix, D:Matrix] contains a matrix B, where each column contains one of A's eigenvalues. The first row contains the eigenvalue's real part, the second row the imaginary. The matrices C and D both have the same dimensions as A. Column j of matrix C contains the real part of the eigenvector corresponding to eigenvalue j and column j of matrix D contains the imaginary part of the eigenvector correspsonding to eigenvalue j. To compute only the left hand's eigenvectors apply this method to Transposed(A).
Example
A:=Mat([[1,2,7,18],[2,4,9,12],[23,8,9,10],[7,5,3,2]]); Dec(Num.EigenValuesAndVectors(A),3); -- CoCoAServer: computing Cpu Time = 0.016 ------------------------------- [Mat([ ["28.970", "-13.677", "0.353", "0.353"], ["0", "0", "3.051", "-3.051"] ]), Mat([ ["0.394", "-0.581", "0.260", "0.260"], ["0.435", "-0.442", "-0.547", "-0.547"], ["0.763", "0.621", "0", "0"], ["0.268", "0.281", "0.046", "0.046"] ]), Mat([ ["0", "0", "-0.031", "0.031"], ["0", "0", "-0.301", "0.301"], ["0", "0", "0.680", "-0.680"], ["0", "0", "-0.274", "0.274"] ])] --------------------------------------------------------------
See also
Numerical.EigenValuesAndAllVectors