Difference between revisions of "ApCoCoA-1:BB.HomBBscheme"
From ApCoCoAWiki
(Short description update.) |
(Added parameter and return value list.) |
||
Line 7: | Line 7: | ||
<description> | <description> | ||
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>. | Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>. | ||
+ | <itemize> | ||
+ | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | ||
+ | <item>@return A list of polynomials representing the defining equations of the homogeneous border basis scheme.</item> | ||
+ | </itemize> | ||
</description> | </description> | ||
<see>BB.BBscheme</see> | <see>BB.BBscheme</see> |
Revision as of 14:22, 22 April 2009
BB.HomBBscheme
Compute the defining equations of a homogeneous border basis scheme.
Syntax
BB.HomBBscheme(OO:LIST):IDEAL
Description
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
@param OO A list of terms representing an order ideal.
@return A list of polynomials representing the defining equations of the homogeneous border basis scheme.