Difference between revisions of "ApCoCoA-1:BB.HomBBscheme"

From ApCoCoAWiki
(Short description update.)
(Added parameter and return value list.)
Line 7: Line 7:
 
     <description>
 
     <description>
 
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
 
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
 +
<itemize>
 +
  <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
 +
  <item>@return A list of polynomials representing the defining equations of the homogeneous border basis scheme.</item>
 +
</itemize>
 
     </description>
 
     </description>
 
     <see>BB.BBscheme</see>
 
     <see>BB.BBscheme</see>

Revision as of 14:22, 22 April 2009

BB.HomBBscheme

Compute the defining equations of a homogeneous border basis scheme.

Syntax

BB.HomBBscheme(OO:LIST):IDEAL

Description

Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.

  • @param OO A list of terms representing an order ideal.

  • @return A list of polynomials representing the defining equations of the homogeneous border basis scheme.

BB.BBscheme