Difference between revisions of "ApCoCoA-1:Bertini.BCMSolve"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
<title>BCMSolve</title>
+
<title>Bertini.BCMSolve</title>
 
<short_description>Solves zero dimensional non-homogeneous polynomial system using multi-homogenization with User Configurations.</short_description>
 
<short_description>Solves zero dimensional non-homogeneous polynomial system using multi-homogenization with User Configurations.</short_description>
 
<syntax>
 
<syntax>
Line 6: Line 6:
 
</syntax>
 
</syntax>
 
<description>
 
<description>
{{ApCoCoAServer}}
+
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
  
<em>M</em>: List of polynomials in the system to be solved.
+
<itemize>
 
+
<item><em>M</em>: List of polynomials in the system to be solved.</item>
<em>ConfigSet</em>: List of strings representing Configurations to be used by bertini. For details about configuration settings see Bertini mannual [http://www.nd.edu/~sommese/bertini/BertiniUsersManual.pdf].
 
  
 +
<item><em>ConfigSet</em>: List of strings representing Configurations to be used by bertini. For details about configuration settings see Bertini mannual <tt>http://www.nd.edu/~sommese/bertini/BertiniUsersManual.pdf</tt>.</item>
 +
</itemize>
 
   
 
   
 
<example>
 
<example>

Revision as of 14:11, 22 April 2009

Bertini.BCMSolve

Solves zero dimensional non-homogeneous polynomial system using multi-homogenization with User Configurations.

Syntax

Bertini.BCMSolve(M:LIST, ConfigSet:LIST)

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Example

-- We want to solve the system x^2+y^2-5=0,xy-2=0, using multi-homogenization, for adaptive precision. 

Use S ::= QQ[x,y];             --  Define appropriate ring 
M := [x^2+y^2-5,xy-2];
ConfigSet := ["MPTYPE: 2"];

-- Then we compute the solution with
$Bertini.BCMSolve(M,ConfigSet);

-- And we achieve:
----------------------------------------
The number of real finite solutions are:
4       
The real finite solutions are:
                                         

1.999999999999915e+00 3.462532971773811e-13
1.000000000000124e+00 -6.955132704987047e-14

-1.999999999999993e+00 1.957928785100847e-14
-1.000000000000000e+00 -9.165547572809745e-17

-1.000000000000005e+00 3.596111848160151e-16
-1.999999999999997e+00 2.776127010762429e-15

1.000000000000007e+00 -2.243821806115299e-15
1.999999999999988e+00 1.140511608347484e-15

For summary of all solutions refer to ApCoCoAServer.