Difference between revisions of "ApCoCoA-1:Bertini.BCMSolve"
From ApCoCoAWiki
Line 1: | Line 1: | ||
<command> | <command> | ||
− | <title>BCMSolve</title> | + | <title>Bertini.BCMSolve</title> |
<short_description>Solves zero dimensional non-homogeneous polynomial system using multi-homogenization with User Configurations.</short_description> | <short_description>Solves zero dimensional non-homogeneous polynomial system using multi-homogenization with User Configurations.</short_description> | ||
<syntax> | <syntax> | ||
Line 6: | Line 6: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | + | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | |
− | <em>M</em>: List of polynomials in the system to be solved. | + | <itemize> |
− | + | <item><em>M</em>: List of polynomials in the system to be solved.</item> | |
− | |||
+ | <item><em>ConfigSet</em>: List of strings representing Configurations to be used by bertini. For details about configuration settings see Bertini mannual <tt>http://www.nd.edu/~sommese/bertini/BertiniUsersManual.pdf</tt>.</item> | ||
+ | </itemize> | ||
<example> | <example> |
Revision as of 14:11, 22 April 2009
Bertini.BCMSolve
Solves zero dimensional non-homogeneous polynomial system using multi-homogenization with User Configurations.
Syntax
Bertini.BCMSolve(M:LIST, ConfigSet:LIST)
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
M: List of polynomials in the system to be solved.
ConfigSet: List of strings representing Configurations to be used by bertini. For details about configuration settings see Bertini mannual http://www.nd.edu/~sommese/bertini/BertiniUsersManual.pdf.
Example
-- We want to solve the system x^2+y^2-5=0,xy-2=0, using multi-homogenization, for adaptive precision. Use S ::= QQ[x,y]; -- Define appropriate ring M := [x^2+y^2-5,xy-2]; ConfigSet := ["MPTYPE: 2"]; -- Then we compute the solution with $Bertini.BCMSolve(M,ConfigSet); -- And we achieve: ---------------------------------------- The number of real finite solutions are: 4 The real finite solutions are: 1.999999999999915e+00 3.462532971773811e-13 1.000000000000124e+00 -6.955132704987047e-14 -1.999999999999993e+00 1.957928785100847e-14 -1.000000000000000e+00 -9.165547572809745e-17 -1.000000000000005e+00 3.596111848160151e-16 -1.999999999999997e+00 2.776127010762429e-15 1.000000000000007e+00 -2.243821806115299e-15 1.999999999999988e+00 1.140511608347484e-15 For summary of all solutions refer to ApCoCoAServer.