Difference between revisions of "ApCoCoA-1:BB.GenMultMat"
From ApCoCoAWiki
(Short description update.) |
(Added parameter and return value list.) |
||
Line 7: | Line 7: | ||
<description> | <description> | ||
Computes the generic multiplication matrix for <formula>x[I]</formula> with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size <formula>Mu<times/>Mu</formula> over the ring <formula>BBS=K[c_{ij}]</formula>. | Computes the generic multiplication matrix for <formula>x[I]</formula> with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size <formula>Mu<times/>Mu</formula> over the ring <formula>BBS=K[c_{ij}]</formula>. | ||
+ | <itemize> | ||
+ | <item>@param <em>I</em> The generic ultiplication matrix for the indeterminate x[I] will be computed.</item> | ||
+ | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | ||
+ | <item>@return The generic multiplication matrix for the indeterminate x[I] over the ring BBS=K[c_{ij}].</item> | ||
+ | </itemize> | ||
</description> | </description> | ||
<key>kreuzer</key> | <key>kreuzer</key> |
Revision as of 14:04, 22 April 2009
BB.GenMultMat
Compute a generic multiplication matrix.
Syntax
BB.GenMultMat(I:INT,OO:LIST):MAT
Description
Computes the generic multiplication matrix for <formula>x[I]</formula> with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size <formula>Mu<times/>Mu</formula> over the ring <formula>BBS=K[c_{ij}]</formula>.
@param I The generic ultiplication matrix for the indeterminate x[I] will be computed.
@param OO A list of terms representing an order ideal.
@return The generic multiplication matrix for the indeterminate x[I] over the ring BBS=K[c_{ij}].