Difference between revisions of "ApCoCoA-1:Weyl.WPower"
From ApCoCoAWiki
(New page: <command> <title>Weyl.WPower</title> <short_description>Computes the integer-power N of a Weyl polynomial. </short_description> <syntax> Weyl.WPower(F:POLY,N:INT):POLY </syntax> <d...) |
(Change Wiki-category) |
||
Line 42: | Line 42: | ||
</example> | </example> | ||
</description> | </description> | ||
− | <wiki-category> | + | <wiki-category>Package_weyl</wiki-category> |
</command> | </command> |
Revision as of 13:32, 22 April 2009
Weyl.WPower
Computes the integer-power N of a Weyl polynomial.
Syntax
Weyl.WPower(F:POLY,N:INT):POLY
Description
Computes the integer-power N of a Weyl ploynomial F:
F: a Weyl polynomial in normal form,
N: a positive integer, power to be calculated.
The result is a Weyl polynomial in Normal form.
Example
A2::=QQ[x[1..2],y[1..2]]; --Define appropriate ring Use A2; F1:=x[1]^2x[2] - y[1]^3 + 3x[2]y[2] - 4; Weyl.WPower(F1,0); 1 ------------------------------- Weyl.WPower(F1,1); x[1]^2x[2] - y[1]^3 + 3x[2]y[2] - 4 ------------------------------- Weyl.WPower(F1,2); x[1]^4x[2]^2 - 2x[1]^2x[2]y[1]^3 + y[1]^6 + 6x[1]^2x[2]^2y[2] - 6x[2]y[1]^3y[2] - 6x[1]x[2]y[1]^2 + 9x[2]^2y[2]^2 - 5x[1]^2x[2] + 8y[1]^3 - 6x[2]y[1] - 15x[2]y[2] + 16 ------------------------------- Weyl.WPower(F1,3); x[1]^6x[2]^3 - 3x[1]^4x[2]^2y[1]^3 + 3x[1]^2x[2]y[1]^6 - y[1]^9 + 9x[1]^4x[2]^3y[2] - 18x[1]^2x[2]^2y[1]^3y[2] + 9x[2]y[1]^6y[2] - 18x[1]^3x[2]^2y[1]^2 + 18x[1]x[2]y[1]^5 + 27x[1]^2x[2]^3y[2]^2 - 27x[2]^2y[1]^3y[2]^2 - 3x[1]^4x[2]^2 + 15x[1]^2x[2]y[1]^3 - 12y[1]^6 - 54x[1]x[2]^2y[1]^2y[2] + 27x[2]^3y[2]^3 - 42x[1]^2x[2]^2y[1] + 36x[2]y[1]^4 - 18x[1]^2x[2]^2y[2] + 45x[2]y[1]^3y[2] + 36x[1]x[2]y[1]^2 - 54x[2]^2y[1]y[2] - 27x[2]^2y[2]^2 + 21x[1]^2x[2] - 24x[1]x[2]^2 - 48y[1]^3 + 36x[2]y[1] + 63x[2]y[2] - 64 ------------------------------- Weyl.WPower(F1,-3); ERROR: 2nd Parameter should be a positive integer CONTEXT: Error("2nd Parameter should be a positive integer") -------------------------------