Difference between revisions of "ApCoCoA-1:DA.DiffGB"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
     <title>diffalg.DiffGB</title>
+
     <title>DA.DiffGB</title>
     <short_description>calculate a differential Groebner basis</short_description>
+
     <short_description>Calculates a differential Groebner basis.</short_description>
 
<syntax>
 
<syntax>
$diffalg.DiffGB(I:IDEAL):LIST
+
DA.DiffGB(I:IDEAL):LIST
 
</syntax>
 
</syntax>
 
<description>
 
<description>
 
Returns a differential Groebner basis of the ideal I which is differentially generated by G  wrt. the current differential term ordering. This function only terminates if the ideal I is zero dimensional and has a finite differential Groebner basis.
 
Returns a differential Groebner basis of the ideal I which is differentially generated by G  wrt. the current differential term ordering. This function only terminates if the ideal I is zero dimensional and has a finite differential Groebner basis.
 +
<itemize>
 +
<item>@param I A differential ideal.</item>
 +
<item>@return If terminating, a list of differential polynomials that form a differential Groebner basis of I.</item>
 +
</itemize>
 
<example>Use Q[x[1..1,0..20]];
 
<example>Use Q[x[1..1,0..20]];
Use Q[x[1..1,0..20]], Ord($diffalg.DiffTO("Lex"));
+
Use Q[x[1..1,0..20]], Ord(DA.DiffTO("Lex"));
$diffalg.DiffGB([x[1,1]^4+x[1,0]]);
+
DA.DiffGB([x[1,1]^4+x[1,0]]);
 
-------------------------------
 
-------------------------------
 
[x[1,3] - 8x[1,1]x[1,2]^3, x[1,1]^2x[1,2]^2 + 1/4x[1,2], x[1,0]x[1,2] - 1/4x[1,1]^2, x[1,1]^4 + x[1,0]]
 
[x[1,3] - 8x[1,1]x[1,2]^3, x[1,1]^2x[1,2]^2 + 1/4x[1,2], x[1,0]x[1,2] - 1/4x[1,1]^2, x[1,1]^4 + x[1,0]]
Line 15: Line 19:
 
</example>
 
</example>
 
</description>
 
</description>
 +
<types>
 +
<type>polynomial</type>
 +
<type>groebner</type>
 +
</types>
 +
<key>DiffGB</key>
 +
<key>DA.DiffGB</key>
 +
<key>diffalg.DiffGB</key>
 +
<key>differential.DiffGB</key>
 
<wiki-category>Package_diffalg</wiki-category>
 
<wiki-category>Package_diffalg</wiki-category>
 
</command>
 
</command>

Revision as of 12:34, 22 April 2009

DA.DiffGB

Calculates a differential Groebner basis.

Syntax

DA.DiffGB(I:IDEAL):LIST

Description

Returns a differential Groebner basis of the ideal I which is differentially generated by G wrt. the current differential term ordering. This function only terminates if the ideal I is zero dimensional and has a finite differential Groebner basis.

  • @param I A differential ideal.

  • @return If terminating, a list of differential polynomials that form a differential Groebner basis of I.

Example

Use Q[x[1..1,0..20]];
Use Q[x[1..1,0..20]], Ord(DA.DiffTO("Lex"));
DA.DiffGB([x[1,1]^4+x[1,0]]);
-------------------------------
[x[1,3] - 8x[1,1]x[1,2]^3, x[1,1]^2x[1,2]^2 + 1/4x[1,2], x[1,0]x[1,2] - 1/4x[1,1]^2, x[1,1]^4 + x[1,0]]
-------------------------------