Difference between revisions of "ApCoCoA-1:Latte.Count"
From ApCoCoAWiki
(New page: <command> <title>latte.Count</title> <short_description> Count</short_description> <syntax> latte.Count() </syntax> <description> {{ApCoCoAServer}} <itemize> <item><em></em></item> </it...) |
|||
Line 1: | Line 1: | ||
<command> | <command> | ||
− | <title> | + | <title>Latte.Count</title> |
− | <short_description> | + | <short_description> Counts the lattice points of a polyhedral given by a number of linear constraints</short_description> |
<syntax> | <syntax> | ||
− | + | Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):INT | |
</syntax> | </syntax> | ||
+ | |||
+ | <syntax> | ||
+ | Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Dil: INT):INT | ||
+ | </syntax> | ||
+ | |||
<description> | <description> | ||
{{ApCoCoAServer}} | {{ApCoCoAServer}} | ||
<itemize> | <itemize> | ||
− | + | <item><em>Equations</em>: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints</item> | |
− | <item><em></em></item> | + | <item><em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item> |
− | + | <item><em>LesserEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item> | |
+ | <item><em>Dil</em>: Integer > 0, factor for dilation of the polyhedral P, to count the lattice points of the polyhedral n*P</item> | ||
</itemize> | </itemize> | ||
<example> | <example> | ||
− | + | To count the lattice points in the polyhedral P = {x >= 0, y >= 0, x <= 1, x + y <= 1}: | |
− | + | Use S ::= QQ[x,y]; | |
− | + | Equations := []; | |
− | + | LesserEq := [x-1, x+y-1]; | |
− | + | GreaterEq := [x,y]; | |
+ | Latte.Count(Equations, LesserEq, GreaterEq); | ||
</example> | </example> | ||
Line 28: | Line 35: | ||
<key>LattE</key> | <key>LattE</key> | ||
<key>Count</key> | <key>Count</key> | ||
− | <key> | + | <key>Latte.Count</key> |
− | <key> | + | <key>latte.Count</key> |
<wiki-category>Package_latte</wiki-category> | <wiki-category>Package_latte</wiki-category> | ||
</command> | </command> |
Revision as of 19:24, 20 April 2009
Latte.Count
Counts the lattice points of a polyhedral given by a number of linear constraints
Syntax
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):INT
Syntax
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Dil: INT):INT
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them.
Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints
LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints
LesserEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints
Dil: Integer > 0, factor for dilation of the polyhedral P, to count the lattice points of the polyhedral n*P
Example
To count the lattice points in the polyhedral P = {x >= 0, y >= 0, x <= 1, x + y <= 1}: Use S ::= QQ[x,y]; Equations := []; LesserEq := [x-1, x+y-1]; GreaterEq := [x,y]; Latte.Count(Equations, LesserEq, GreaterEq);