Difference between revisions of "ApCoCoA-1:Bertini.BMSolve"
From ApCoCoAWiki
(New page: <command> <title>BSolve</title> <short_description>Solves zero dimensional Homogeneous or Non-Homogeneous polynomial system with Default Configurations.</short_description> <syntax> Bertin...) |
|||
Line 1: | Line 1: | ||
<command> | <command> | ||
− | <title> | + | <title>BMSolve</title> |
− | <short_description>Solves zero dimensional | + | <short_description>Solves zero dimensional Non-Homogeneous polynomial system using Mult-homogenization with Default Configurations.</short_description> |
<syntax> | <syntax> | ||
− | Bertini. | + | Bertini.BMSolve(M:LIST) |
</syntax> | </syntax> | ||
<description> | <description> | ||
Line 9: | Line 9: | ||
<em>M</em>: List of polynomials in the system to be solved. | <em>M</em>: List of polynomials in the system to be solved. | ||
− | |||
− | |||
− | |||
<example> | <example> | ||
− | + | -- We want to solve the non-homogenous system x[1]^2+x[2]^2-5=0, x[1]x[2]-2=0, using multi-homogenization. | |
− | -- We want to solve | ||
− | Use S ::= QQ[x | + | Use S ::= QQ[x[1..2]]; -- Define appropriate ring |
− | M := [x^2+ | + | M := [x[1]^2+x[2]^2-5, x[1]x[2]-2]; |
− | |||
-- Then we compute the solution with | -- Then we compute the solution with | ||
− | $Bertini.BSolve(M | + | $Bertini.BSolve(M); |
-- And we achieve: | -- And we achieve: | ||
Line 30: | Line 25: | ||
The real finite solutions are: | The real finite solutions are: | ||
− | + | -2.000000000000035e+00 2.454024452036439e-14 | |
− | + | -9.999999999999871e-01 -1.788069996029196e-15 | |
− | |||
− | |||
− | -2. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | -9. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | -9.999999999999907e-01 -1.089397896007851e-14 | |
− | + | -2.000000000000040e+00 2.607382514440176e-14 | |
− | |||
− | + | 1.999999999999310e+00 2.357507317170427e-13 | |
− | - | + | 1.000000000000226e+00 -9.624182470906783e-14 |
− | |||
− | + | 1.000000000000282e+00 7.742365792116463e-14 | |
− | 1. | + | 1.999999999999288e+00 -1.777128279159746e-14 |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
For summary of all solutions refer to ApCoCoAServer | For summary of all solutions refer to ApCoCoAServer | ||
− | + | ------------------------------------------ | |
− | ------------------------------------ | ||
</example> | </example> | ||
Line 89: | Line 45: | ||
<type>cocoaserver</type> | <type>cocoaserver</type> | ||
</types> | </types> | ||
− | <key> | + | <key>bmsolve</key> |
− | <key>solve zero dimensional polynomial system</key> | + | <key>solve zero dimensional Non-homogeneous polynomial system using mult-homogenization</key> |
− | <key>solve | + | <key>solve bm</key> |
<key>eullah</key> | <key>eullah</key> | ||
<wiki-category>Package_bertini</wiki-category> | <wiki-category>Package_bertini</wiki-category> | ||
</command> | </command> |
Revision as of 10:12, 20 April 2009
BMSolve
Solves zero dimensional Non-Homogeneous polynomial system using Mult-homogenization with Default Configurations.
Syntax
Bertini.BMSolve(M:LIST)
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them.
M: List of polynomials in the system to be solved.
Example
-- We want to solve the non-homogenous system x[1]^2+x[2]^2-5=0, x[1]x[2]-2=0, using multi-homogenization. Use S ::= QQ[x[1..2]]; -- Define appropriate ring M := [x[1]^2+x[2]^2-5, x[1]x[2]-2]; -- Then we compute the solution with $Bertini.BSolve(M); -- And we achieve: ---------------------------------------- The number of real finite solutions are: 4 The real finite solutions are: -2.000000000000035e+00 2.454024452036439e-14 -9.999999999999871e-01 -1.788069996029196e-15 -9.999999999999907e-01 -1.089397896007851e-14 -2.000000000000040e+00 2.607382514440176e-14 1.999999999999310e+00 2.357507317170427e-13 1.000000000000226e+00 -9.624182470906783e-14 1.000000000000282e+00 7.742365792116463e-14 1.999999999999288e+00 -1.777128279159746e-14 For summary of all solutions refer to ApCoCoAServer ------------------------------------------