Difference between revisions of "ApCoCoA-1:Weyl.WMul"
From ApCoCoAWiki
m (ApCoCoA:Weyl.WeylGB moved to ApCoCoA:Weyl.WMul: WeylGB(I) is replaced by WGB(I)) |
|
(No difference)
|
Revision as of 10:09, 20 April 2009
Weyl.WGB
Computes the Groebner basis of an ideal I in Weyl algebra , using corresponding
implementation in CoCoALib.
Syntax
Weyl.WGB(I):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them.
This function computes a Groebner Basis for an Ideal where every generator should be a Weyl polynomial in Normal form.
Example
A1::=QQ[x,d]; --Define appropraite ring Use A1; I:=Ideal(x,d); -- Now start ApCoCoA server for executing next command Weyl.WeylGB(I); -- CoCoAServer: computing Cpu Time = 0 ------------------------------- [1] ------------------------------- Note that Groebner basis you obtained is minimal. A2::=QQ[x[1..2],y[1..2]]; Use A2; I1:=Ideal(x[1]^7,y[1]^7); Weyl.WGB(I1); -- CoCoAServer: computing Cpu Time = 0.094 ------------------------------- [1] -------------------------------
Example
W3::=ZZ/(7)[x[1..3],d[1..3]]; Use W3; I2:=Ideal(x[1]^7,d[1]^7); --is a 2-sided ideal in W3 Weyl.WGB(I2); --ApCoCOAServer should be running -- CoCoAServer: computing Cpu Time = 0 ------------------------------- [x[1]^7, d[1]^7] ------------------------------- I3:=Ideal(x[1]^3d[2],x[2]*d[1]^2); Weyl.WGB(I3); -- CoCoAServer: computing Cpu Time = 0 ------------------------------- [x[2]^2d[2], x[2]d[2]^2 + 2d[2], x[1]^3d[1]^2 + x[1]^2x[2]d[1]d[2] + x[1]x[2]d[2], x[1]^3d[2], x[2]d[1]^2] -------------------------------
See also