Difference between revisions of "ApCoCoA-1:IML.Solve"
From ApCoCoAWiki
(Initial version) |
(Added ApCoCoAServer note) |
||
Line 6: | Line 6: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
+ | {{ApCoCoAServer}} Please also not that you need an ApCoCoAServer with enabled IML support. | ||
+ | |||
Let <tt>M</tt> and <tt>B</tt> be matrices defined over the ring of integers, a finite field or the field of rationals. This function tries to solve the linear equation system <tt>M*X = B</tt> by using the ApCoCoAServer supported by the IML library. | Let <tt>M</tt> and <tt>B</tt> be matrices defined over the ring of integers, a finite field or the field of rationals. This function tries to solve the linear equation system <tt>M*X = B</tt> by using the ApCoCoAServer supported by the IML library. | ||
Revision as of 12:59, 14 November 2008
Solve
solve linear equation system
Syntax
IML.Solve(M:MAT, B:MAT):MAT
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them. Please also not that you need an ApCoCoAServer with enabled IML support.
Let M and B be matrices defined over the ring of integers, a finite field or the field of rationals. This function tries to solve the linear equation system M*X = B by using the ApCoCoAServer supported by the IML library.
The return value will be a solution vector of the linear equation system or an empty matrix if no solution has been found.
Example
Use Z/(19)[x]; M := BringIn(Mat([[1,3,4], [0,2,1]])); B := BringIn(Mat([[1], [2]])); IML.Solve(M, B); ------------------------------- Mat([ [-2 % 19], [1 % 19], [0 % 19] ]) ------------------------------- Use Q[x]; M := Mat([ [1,3,4], [0,2,1], [1,3,4] ]); B := Mat([ [1], [2], [0] ]); IML.Solve(M, B); ------------------------------- Mat([ [ ] ]) -------------------------------