Difference between revisions of "ApCoCoA-1:CharP.GBasisF16"

From ApCoCoAWiki
(fixing the XML tag)
(creating an empty dummy.)
Line 6: Line 6:
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
This function returns reduced Groebner basis for the ideal, intersected with the ideal, created by <formula>x^2-x</formula> for all indeterminates. If <formula>x^2-x</formula> for
+
 
all indeterminates is in the ideal (e.g. the set of zeros is a subset of <formula>\{0,1\}^n</formula>) this method should produce the GBasis much faster!
 
Please be aware, that this is much more efficient if the term ordering is Lex, DegLex or DegRevLex. Otherwise, first a DegRevLex GBasis is computed and then
 
transformed with the FGLM-algorithm.
 
 
     </description>
 
     </description>
 
     <seealso>
 
     <seealso>
      <see>FGLM</see>
 
 
       <see>GBasis</see>
 
       <see>GBasis</see>
    </seealso>
+
    <see>char2.GBasisF2</see>
 +
    <see>char2.GBasisF4</see>
 +
    <see>char2.GBasisF8</see>
 +
    <see>char2.GBasisF32</see>
 +
    <see>char2.GBasisF64</see>
 +
    <see>char2.GBasisF128</see>
 +
    <see>char2.GBasisF256</see>
 +
    <see>char2.GBasisF512</see>
 +
    <see>char2.GBasisF1024</see>
 +
    <see>char2.GBasisF2048</see>
 +
    <see>char2.GBasisF4096</see>
 +
    <see>char2.GBasisModSquares</see>
 +
 
 +
  </seealso>
 
     <key>heldt</key>
 
     <key>heldt</key>
     <key>char2.gbasismodsquares</key>
+
     <key>char2.GBasisF16</key>
 
     <wiki-category>Package_char2</wiki-category>
 
     <wiki-category>Package_char2</wiki-category>
 
   </command>
 
   </command>

Revision as of 15:58, 5 March 2008

Char2.GBasisF16

computing a gbasis of a given ideal in <formula>\mathbb{F}_{16}</formula>

Syntax

$char2.GBasisF16(Ideal):List

Description


See also

GBasis

char2.GBasisF2

char2.GBasisF4

char2.GBasisF8

char2.GBasisF32

char2.GBasisF64

char2.GBasisF128

char2.GBasisF256

char2.GBasisF512

char2.GBasisF1024

char2.GBasisF2048

char2.GBasisF4096

char2.GBasisModSquares