Difference between revisions of "ApCoCoA-1:BB.HomBBscheme"

From ApCoCoAWiki
m
(new alias)
Line 1: Line 1:
 
<command>
 
<command>
     <title>borderbasis.HomBBscheme</title>
+
     <title>BB.HomBBscheme</title>
 
     <short_description>defining equations of homogeneous border basis scheme</short_description>
 
     <short_description>defining equations of homogeneous border basis scheme</short_description>
 
<syntax>
 
<syntax>
$borderbasis.HomBBscheme(OO:LIST):IDEAL
+
BB.HomBBscheme(OO:LIST):IDEAL
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
 
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
 
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
 
     </description>
 
     </description>
     <see>borderbasis.BBscheme</see>
+
     <see>BB.BBscheme</see>
 
     <key>kreuzer</key>
 
     <key>kreuzer</key>
 +
    <key>bb.hombbscheme</key>
 
     <key>borderbasis.hombbscheme</key>
 
     <key>borderbasis.hombbscheme</key>
 
     <wiki-category>Package_borderbasis</wiki-category>
 
     <wiki-category>Package_borderbasis</wiki-category>
 
</command>
 
</command>

Revision as of 19:48, 8 November 2007

BB.HomBBscheme

defining equations of homogeneous border basis scheme

Syntax

BB.HomBBscheme(OO:LIST):IDEAL

Description

Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.

BB.BBscheme