Difference between revisions of "ApCoCoA-1:BB.BBscheme"

From ApCoCoAWiki
(second element)
m
Line 6: Line 6:
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
+
Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
 
<example>
 
<example>
 
Use Q[x,y,z];
 
Use Q[x,y,z];

Revision as of 12:17, 8 November 2007

borderbasis.BBscheme

defining equations of border basis scheme

Syntax

$borderbasis.BBscheme(OO:LIST):IDEAL

Description

Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.

Example

Use Q[x,y,z];
$borderbasis.BBscheme([1,x]);
BBS :: Ideal(c[1,5]c[2,2] - c[1,4], c[1,2]c[1,5] - c[1,5]c[2,4] + c[1,4]c[2,5],
c[2,2]c[2,5] + c[1,2] - c[2,4], c[1,5]c[2,2] - c[1,4], c[1,5]c[2,1] - c[1,3],
c[1,1]c[1,5] - c[1,5]c[2,3] + c[1,3]c[2,5], c[2,1]c[2,5] + c[1,1] - c[2,3],
c[1,5]c[2,1] - c[1,3], c[1,4]c[2,1] - c[1,3]c[2,2],
c[1,2]c[1,3] - c[1,1]c[1,4] + c[1,4]c[2,3] - c[1,3]c[2,4],
c[1,2]c[2,1] - c[1,1]c[2,2] + c[2,2]c[2,3] - c[2,1]c[2,4], c[1,4]c[2,1] - c[1,3]c[2,2])
-------------------------------

borderbasis.HomBBscheme