Difference between revisions of "ApCoCoA-1:BB.BBscheme"
From ApCoCoAWiki
KHiddemann (talk | contribs) (second element) |
KHiddemann (talk | contribs) m |
||
Line 6: | Line 6: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>. | + | Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>. |
<example> | <example> | ||
Use Q[x,y,z]; | Use Q[x,y,z]; |
Revision as of 12:17, 8 November 2007
borderbasis.BBscheme
defining equations of border basis scheme
Syntax
$borderbasis.BBscheme(OO:LIST):IDEAL
Description
Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
Example
Use Q[x,y,z]; $borderbasis.BBscheme([1,x]); BBS :: Ideal(c[1,5]c[2,2] - c[1,4], c[1,2]c[1,5] - c[1,5]c[2,4] + c[1,4]c[2,5], c[2,2]c[2,5] + c[1,2] - c[2,4], c[1,5]c[2,2] - c[1,4], c[1,5]c[2,1] - c[1,3], c[1,1]c[1,5] - c[1,5]c[2,3] + c[1,3]c[2,5], c[2,1]c[2,5] + c[1,1] - c[2,3], c[1,5]c[2,1] - c[1,3], c[1,4]c[2,1] - c[1,3]c[2,2], c[1,2]c[1,3] - c[1,1]c[1,4] + c[1,4]c[2,3] - c[1,3]c[2,4], c[1,2]c[2,1] - c[1,1]c[2,2] + c[2,2]c[2,3] - c[2,1]c[2,4], c[1,4]c[2,1] - c[1,3]c[2,2]) -------------------------------