Difference between revisions of "ApCoCoA-1:BB.BBasisForOI"

From ApCoCoAWiki
m
(Reviewed text)
Line 1: Line 1:
 
<command>
 
<command>
 
     <title>borderbasis.BorderBasis</title>
 
     <title>borderbasis.BorderBasis</title>
     <short_description>Compute BB of an ideal w.r.t. to an order ideal</short_description>
+
     <short_description>border basis of an ideal</short_description>
 
<syntax>
 
<syntax>
 
$borderbasis.BorderBasis(F:LIST,OO:LIST):LIST
 
$borderbasis.BorderBasis(F:LIST,OO:LIST):LIST
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
Computes the border basis of the ideal <formula>I=&lt;F&gt;</formula> with respect to the order ideal OO. Gives an error messages if no border basis exists. Uses the <formula>O_{\sigma}(I)</formula> border basis and the BB transformation. The input is a list of poly F and a list of terms OO. The output is a list of poly.
+
Computes the border basis of the ideal <formula>I=&lt;F&gt;</formula> with respect to the order ideal OO. Gives an error messages if no border basis exists. Uses the <formula>O_{\sigma}(I)</formula> border basis and the border basis transformation algorithm. The input is a list of polynomials F and a list OO of terms that specify an order ideal. The output is a list of polynomials.
 +
<example>
 +
Use Q[x,y];
 +
$borderbasis.BorderBasis([x^2, xy + y^2], [1,x,y,y^2]);
 +
 
 +
[xy + y^2, x^2, y^3, xy^2]
 +
-------------------------------
 +
</example>
 
     </description>
 
     </description>
 +
    <see>BBasis</see>
 
     <key>Kreuzer</key>
 
     <key>Kreuzer</key>
 
     <key>borderbasis.borderbasis</key>
 
     <key>borderbasis.borderbasis</key>

Revision as of 23:04, 7 November 2007

borderbasis.BorderBasis

border basis of an ideal

Syntax

$borderbasis.BorderBasis(F:LIST,OO:LIST):LIST

Description

Computes the border basis of the ideal <formula>I=<F></formula> with respect to the order ideal OO. Gives an error messages if no border basis exists. Uses the <formula>O_{\sigma}(I)</formula> border basis and the border basis transformation algorithm. The input is a list of polynomials F and a list OO of terms that specify an order ideal. The output is a list of polynomials.

Example

Use Q[x,y];
$borderbasis.BorderBasis([x^2, xy + y^2], [1,x,y,y^2]);

[xy + y^2, x^2, y^3, xy^2]
-------------------------------

BBasis