Difference between revisions of "ApCoCoA-1:BB.BBscheme"

From ApCoCoAWiki
(adding formula tags)
(Reviewed text and added example)
Line 1: Line 1:
 
<command>
 
<command>
 
     <title>borderbasis.BBscheme</title>
 
     <title>borderbasis.BBscheme</title>
     <short_description>Compute defining eqns of BB scheme</short_description>
+
     <short_description>defining equations of border basis scheme</short_description>
 
<syntax>
 
<syntax>
 
$borderbasis.BBscheme(OO:LIST):IDEAL
 
$borderbasis.BBscheme(OO:LIST):IDEAL
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is an order ideal OO (2nd element of type POLY). The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
+
Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
 +
<example>
 +
Use Q[x,y,z];
 +
$borderbasis.BBscheme([1,x]);
 +
BBS :: Ideal(c[1,5]c[2,2] - c[1,4], c[1,2]c[1,5] - c[1,5]c[2,4] + c[1,4]c[2,5],
 +
c[2,2]c[2,5] + c[1,2] - c[2,4], c[1,5]c[2,2] - c[1,4], c[1,5]c[2,1] - c[1,3],
 +
c[1,1]c[1,5] - c[1,5]c[2,3] + c[1,3]c[2,5], c[2,1]c[2,5] + c[1,1] - c[2,3],
 +
c[1,5]c[2,1] - c[1,3], c[1,4]c[2,1] - c[1,3]c[2,2],
 +
c[1,2]c[1,3] - c[1,1]c[1,4] + c[1,4]c[2,3] - c[1,3]c[2,4],
 +
c[1,2]c[2,1] - c[1,1]c[2,2] + c[2,2]c[2,3] - c[2,1]c[2,4], c[1,4]c[2,1] - c[1,3]c[2,2])
 +
-------------------------------
 +
</example>
 
     </description>
 
     </description>
 +
    <see>borderbasis.HomBBscheme</see>
 
     <key>Kreuzer</key>
 
     <key>Kreuzer</key>
 
     <key>borderbasis.bbscheme</key>
 
     <key>borderbasis.bbscheme</key>

Revision as of 22:40, 7 November 2007

borderbasis.BBscheme

defining equations of border basis scheme

Syntax

$borderbasis.BBscheme(OO:LIST):IDEAL

Description

Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.

Example

Use Q[x,y,z];
$borderbasis.BBscheme([1,x]);
BBS :: Ideal(c[1,5]c[2,2] - c[1,4], c[1,2]c[1,5] - c[1,5]c[2,4] + c[1,4]c[2,5],
c[2,2]c[2,5] + c[1,2] - c[2,4], c[1,5]c[2,2] - c[1,4], c[1,5]c[2,1] - c[1,3],
c[1,1]c[1,5] - c[1,5]c[2,3] + c[1,3]c[2,5], c[2,1]c[2,5] + c[1,1] - c[2,3],
c[1,5]c[2,1] - c[1,3], c[1,4]c[2,1] - c[1,3]c[2,2],
c[1,2]c[1,3] - c[1,1]c[1,4] + c[1,4]c[2,3] - c[1,3]c[2,4],
c[1,2]c[2,1] - c[1,1]c[2,2] + c[2,2]c[2,3] - c[2,1]c[2,4], c[1,4]c[2,1] - c[1,3]c[2,2])
-------------------------------

borderbasis.HomBBscheme