Difference between revisions of "ApCoCoA-1:BB.NDgens"
From ApCoCoAWiki
KHiddemann (talk | contribs) (removing Kaspar's command refs in the descriptions since the man pages look strange) |
(Reviewed text and added example) |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>borderbasis.NDgens</title> | <title>borderbasis.NDgens</title> | ||
− | <short_description> | + | <short_description>generators of vanishing ideal of border basis scheme</short_description> |
<syntax> | <syntax> | ||
$borderbasis.NDgens(K:INT,OO:LIST):LIST | $borderbasis.NDgens(K:INT,OO:LIST):LIST | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of NDneighbors(OO). The input is an integer K | + | Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of NDneighbors(OO). The input is an integer K in the range 1..Len(NDneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring <formula>BBS=K[c_{ij}]</formula>. |
+ | <example> | ||
+ | Use Q[x,y,z]; | ||
+ | $borderbasis.NDgens(1, [1,x]); | ||
+ | [BBS :: c[1,5]c[2,1] - c[1,3], BBS :: c[2,1]c[2,5] + c[1,1] - c[2,3]] | ||
+ | ------------------------------- | ||
+ | </example> | ||
</description> | </description> | ||
+ | <see>borderbasis.ASgens</see> | ||
+ | <see>borderbasis.HomASgens</see> | ||
+ | <see>borderbasis.HomNDgens</see> | ||
<key>Kreuzer</key> | <key>Kreuzer</key> | ||
<key>borderbasis.ndgens</key> | <key>borderbasis.ndgens</key> |
Revision as of 22:11, 7 November 2007
borderbasis.NDgens
generators of vanishing ideal of border basis scheme
Syntax
$borderbasis.NDgens(K:INT,OO:LIST):LIST
Description
Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of NDneighbors(OO). The input is an integer K in the range 1..Len(NDneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring <formula>BBS=K[c_{ij}]</formula>.
Example
Use Q[x,y,z]; $borderbasis.NDgens(1, [1,x]); [BBS :: c[1,5]c[2,1] - c[1,3], BBS :: c[2,1]c[2,5] + c[1,1] - c[2,3]] -------------------------------