Difference between revisions of "CoCoASchool2007"

From ApCoCoAWiki
(New page: =Tutorials of the Robbiano/Kreuzer track= [http://apcocoa.org/~mabshoff/CoCoAVII/KR_tutorial_1.pdf Tutorial 1] (82kb))
 
m
Line 2: Line 2:
  
 
[http://apcocoa.org/~mabshoff/CoCoAVII/KR_tutorial_1.pdf Tutorial 1] (82kb)
 
[http://apcocoa.org/~mabshoff/CoCoAVII/KR_tutorial_1.pdf Tutorial 1] (82kb)
 +
 +
== the ideals for part c.) ==
 +
 +
Use Q[x[1..4]];
 +
IsZeroDim(Ideal([x[1]x[3], x[1]x[4]-x[2]x[3], x[2]x[4]-x[3]^3, x[2]^2x[3]-x[1]x[3]^2]));
 +
 +
Use Q[x[1..3]];
 +
IsZeroDim(Ideal([x[1]^3 - x[2]x[3]^2, x[1]^2x[2]x[3] - x[2]^2, x[1]^2 + x[2]^2 + x[3]^2]));
 +
 +
Use Q[x[1..4]];
 +
IsZeroDim(Ideal([x[1]x[2]-x[3]^2,x[2]^2-x[3]x[4],x[1]x[3] - x[4]^3,x[2]x[4] - x[3]^2]));
 +
 +
Use Q[x[1..3]];
 +
IsZeroDim(Ideal([x[1]^2 - x[1]x[2],x[2]^2-x[2]x[3],x[3]^2-x[3]x[1],x[1]x[2] + x[2]x[3] + x[1]x[3]]));
 +
 +
 +
== the ideals for part f.) ==
 +
Warning: Second ideal is NOT zero dimensional!
 +
 +
Use Q[x,y];
 +
ZeroDimRadical(Ideal([x^3,x^2y,x,y^2]) );
 +
 +
Use Q[x,y,z];
 +
ZeroDimRadical(Ideal([x^2 +2xy + y^2, xz+ yz, xy^2+y^3 + xy + y^2,y^4+2y^3 + y^2, y^2z + yz]));
 +
 +
 +
Use Q[x,y,z];
 +
ZeroDimRadical(Ideal([x^2 + y+z -1, x+y^2 + z -1, x+y+z^2 -1]));

Revision as of 14:25, 18 June 2007

Tutorials of the Robbiano/Kreuzer track

Tutorial 1 (82kb)

the ideals for part c.)

Use Q[x[1..4]]; IsZeroDim(Ideal([x[1]x[3], x[1]x[4]-x[2]x[3], x[2]x[4]-x[3]^3, x[2]^2x[3]-x[1]x[3]^2]));

Use Q[x[1..3]]; IsZeroDim(Ideal([x[1]^3 - x[2]x[3]^2, x[1]^2x[2]x[3] - x[2]^2, x[1]^2 + x[2]^2 + x[3]^2]));

Use Q[x[1..4]]; IsZeroDim(Ideal([x[1]x[2]-x[3]^2,x[2]^2-x[3]x[4],x[1]x[3] - x[4]^3,x[2]x[4] - x[3]^2]));

Use Q[x[1..3]]; IsZeroDim(Ideal([x[1]^2 - x[1]x[2],x[2]^2-x[2]x[3],x[3]^2-x[3]x[1],x[1]x[2] + x[2]x[3] + x[1]x[3]]));


the ideals for part f.)

Warning: Second ideal is NOT zero dimensional!

Use Q[x,y]; ZeroDimRadical(Ideal([x^3,x^2y,x,y^2]) );

Use Q[x,y,z]; ZeroDimRadical(Ideal([x^2 +2xy + y^2, xz+ yz, xy^2+y^3 + xy + y^2,y^4+2y^3 + y^2, y^2z + yz]));


Use Q[x,y,z]; ZeroDimRadical(Ideal([x^2 + y+z -1, x+y^2 + z -1, x+y+z^2 -1]));