Difference between revisions of "User:LongLe"

From ApCoCoAWiki
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{Version|2|[[ApCoCoA-1:SB.Sagbi]] and [[ApCoCoA-1:SB.ReducedSagbi]]}}
+
Ngoc Long Le, <br>
<command>
+
Chair of Symbolic Computation, <br>
  <title>SB.SAGBI</title>
+
University of Passau <br>
  <short_description>Computes a finite SAGBI-basis of a subalgebra if existing.</short_description>
 
 
 
  <syntax>SB.SAGBI(G:LIST of POLY):LIST of POLY</syntax>
 
  <description>
 
This function computes a finite SAGBI-basis of a subalgebra <tt>S</tt> generated by the polynomials of the list <tt>G</tt>, if a finite SAGBI-basis of <tt>S</tt> exists. Then a list of polynomials is returned which form a SAGBI-basis of <tt>S</tt>. Otherwise the computation runs until it is interrupted.
 
    <itemize>
 
      <item>@param <em>G</em> A list of polynomials which generates a subalgebra.</item>
 
      <item>@return A list of polynomials which form a finite SAGBI-basis of the subalgebra generated by <tt>G</tt>.</item>
 
    </itemize>
 
 
 
    <example>
 
Use QQ[x,y,z], DegRevLex;
 
S := SB.SAGBI([x^2 -z^2,  x*y +z^2,  y^2 -2*z^2]);
 
indent(S);
 
-- [
 
--  y^2 -2*z^2,
 
--  x*y +z^2,
 
--  x^2 -z^2,
 
--  x^2*z^2 +x*y*z^2 +(1/2)*y^2*z^2 +(-1/2)*z^4
 
-- ]</example>
 
  </description>
 
 
 
  <seealso>
 
    <see>Package zerodim</see>
 
    <see>Package sagbi/SB.SAGBITimeout</see>
 
    <see>Package sagbi/SB.IsSAGBIOf</see>
 
    <see>Package sagbi/SB.GetSAGBI</see>
 
    <see>Package sagbi/SB.GetTruncSAGBI</see>
 
  </seealso>
 
 
 
  <types>
 
    <type>sagbi</type>
 
    <type>poly</type>
 
  </types>
 
 
 
  <key>SAGBI</key>
 
  <key>SB.SAGBI</key>
 
  <key>apcocoa/sagbi.SAGBI</key>
 
 
 
  <wiki-category>Package sagbi</wiki-category>
 
</command>
 

Latest revision as of 01:12, 18 November 2022

Ngoc Long Le,
Chair of Symbolic Computation,
University of Passau