|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | {{Version|2|[[ApCoCoA-1:SB.Sagbi]] and [[ApCoCoA-1:SB.ReducedSagbi]]}}
| + | Ngoc Long Le, <br> |
− | <command>
| + | Chair of Symbolic Computation, <br> |
− | <title>SB.SAGBI</title>
| + | University of Passau <br> |
− | <short_description>Computes a finite SAGBI-basis of a subalgebra if existing.</short_description>
| |
− | | |
− | <syntax>SB.SAGBI(G:LIST of POLY):LIST of POLY</syntax>
| |
− | <description>
| |
− | This function computes a finite SAGBI-basis of a subalgebra <tt>S</tt> generated by the polynomials of the list <tt>G</tt>, if a finite SAGBI-basis of <tt>S</tt> exists. Then a list of polynomials is returned which form a SAGBI-basis of <tt>S</tt>. Otherwise the computation runs until it is interrupted.
| |
− | <itemize>
| |
− | <item>@param <em>G</em> A list of polynomials which generates a subalgebra.</item>
| |
− | <item>@return A list of polynomials which form a finite SAGBI-basis of the subalgebra generated by <tt>G</tt>.</item>
| |
− | </itemize>
| |
− | | |
− | <example>
| |
− | Use QQ[x,y,z], DegRevLex;
| |
− | S := SB.SAGBI([x^2 -z^2, x*y +z^2, y^2 -2*z^2]);
| |
− | indent(S);
| |
− | -- [
| |
− | -- y^2 -2*z^2,
| |
− | -- x*y +z^2,
| |
− | -- x^2 -z^2,
| |
− | -- x^2*z^2 +x*y*z^2 +(1/2)*y^2*z^2 +(-1/2)*z^4
| |
− | -- ]</example>
| |
− | </description>
| |
− | | |
− | <seealso>
| |
− | <see>Package zerodim</see>
| |
− | <see>Package sagbi/SB.SAGBITimeout</see>
| |
− | <see>Package sagbi/SB.IsSAGBIOf</see>
| |
− | <see>Package sagbi/SB.GetSAGBI</see>
| |
− | <see>Package sagbi/SB.GetTruncSAGBI</see>
| |
− | </seealso>
| |
− | | |
− | <types>
| |
− | <type>sagbi</type>
| |
− | <type>poly</type>
| |
− | </types>
| |
− | | |
− | <key>SAGBI</key>
| |
− | <key>SB.SAGBI</key>
| |
− | <key>apcocoa/sagbi.SAGBI</key>
| |
− | | |
− | <wiki-category>Package sagbi</wiki-category>
| |
− | </command> | |
Latest revision as of 01:12, 18 November 2022
Ngoc Long Le,
Chair of Symbolic Computation,
University of Passau