Difference between revisions of "Package borderbasis"
From ApCoCoAWiki
(7 intermediate revisions by the same user not shown) | |||
Line 11: | Line 11: | ||
input: OO a non-empty set of terms in K[x[1..N]] | input: OO a non-empty set of terms in K[x[1..N]] | ||
output: boolean value for checking OO being an order ideal | output: boolean value for checking OO being an order ideal | ||
+ | </pre> | ||
+ | [[IndexO]] | ||
+ | <pre> | ||
+ | IndexO(P,T,OO): returns index of a term in K[x[1..N]]w.r.t an order ideal OO. | ||
+ | input: T a term in P= K[x[1..N]], OO an oder ideal in P | ||
+ | output: the index of T w.r.t. OO | ||
</pre> | </pre> | ||
[[Border]] | [[Border]] | ||
Line 26: | Line 32: | ||
[[BBasisForOI]] | [[BBasisForOI]] | ||
<pre> | <pre> | ||
− | BBasisForOI(F,OO): computes the border basis of the ideal I=<F> with respect to the order ideal OO, gives an error messages if no border basis exists, uses the O_sigma(I) border basis and the BB transformation. | + | BBasisForOI(F,OO): computes the border basis of the ideal I=<F> with respect to the order ideal OO, |
+ | gives an error messages if no border basis exists, uses the O_sigma(I) border basis and the BB transformation. | ||
input: list of poly F, list of terms OO | input: list of poly F, list of terms OO | ||
output: list of poly | output: list of poly | ||
− | </pre> | + | </pre> |
[[BorderDivAlg]] | [[BorderDivAlg]] | ||
− | <pre> | + | <pre> |
BorderDivAlg(P,F,OO,Prebasis): applies the Border Division Algorithm w.r.t. the order ideal OO and the border prebasis | BorderDivAlg(P,F,OO,Prebasis): applies the Border Division Algorithm w.r.t. the order ideal OO and the border prebasis | ||
− | Prebasis to the polynomial F and returns a record with fields Quotients and Remainder where Remainder is the normal OO-remainder of F. | + | Prebasis to the polynomial F and returns a record with fields |
+ | Quotients and Remainder where Remainder is the normal OO-remainder of F. | ||
input: poly F, list of terms OO, list of poly Prebasis | input: poly F, list of terms OO, list of poly Prebasis | ||
output: record with two fields Quotients and Remainder | output: record with two fields Quotients and Remainder | ||
+ | </pre> | ||
+ | [[BorderDivAlgForCoeffs]] | ||
+ | <pre> | ||
+ | BorderDivAlgForCoeffs(P,F,OO,Prebasis): applies BorderDivAlg to form | ||
+ | a list La in P such that F has a presentation of form | ||
+ | F=La[1]*OO[1]+...+La[Mu]*OO[Mu]+H, H in <Prebasis>. | ||
+ | input: poly F, list of terms OO, list of poly Prebasis | ||
+ | output: list of polys of length Mu=len(OO) | ||
+ | </pre> | ||
+ | [[BBRing]] | ||
+ | <pre> | ||
+ | BBRing(OO): creates the (standard) bb poly ring of OO. | ||
+ | input: list of terms OO in K[x[1..N]] | ||
+ | output: the ring K[c_ij] of OO | ||
+ | </pre> | ||
+ | [[GenMultMat]] | ||
+ | <pre> | ||
+ | GenMultMat(BBS,OO): computes the generic multiplication matrices with respect to the order ideal OO. | ||
+ | input: BBS the bb poly ring of OO, OO order ideal in K[x[1..N]] | ||
+ | output: matrices of size Mu x Mu over the ring BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[IthGenMultMat]] | ||
+ | <pre> | ||
+ | IthGenMultMat(BBS,OO,I): computes the generic multiplication matrix | ||
+ | for x[I] with respect to the order ideal OO. | ||
+ | input: I pos integer, OO order ideal in K[x[1..N]], BBS the bb poly ring of OO | ||
+ | output: matrix of size Mu x Mu over the ring BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[GenHomMultMat]] | ||
+ | <pre> | ||
+ | GenHomMultMat(BBS,OO): computes the generic homog. mult. matrices with respect to the order ideal OO. | ||
+ | input: BBS the bb poly ring of OO, OO order ideal in K[x[1..N]] | ||
+ | output: matrices of size Mu x Mu over the ring BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[IthGenHomMultMat]] | ||
+ | <pre> | ||
+ | IthGenHomMultMat(BBS,OO,I): computes the generic homog. mult. matrix | ||
+ | for x[I] with respect to the order ideal OO. | ||
+ | input: I pos integer, OO order ideal in K[x[1..N]], BBS the bb poly ring of OO | ||
+ | output: matrix of size Mu x Mu over the ring BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[GenDfMultMat]] | ||
+ | <pre> | ||
+ | GenDfMultMat(BBS,OO): computes the generic deg-filt mult. matrices with respect to the order ideal OO. | ||
+ | input: BBS the bb poly ring of OO, OO order ideal in K[x[1..N]] | ||
+ | output: matrices of size Mu x Mu over the ring BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[IthGenDfMultMat]] | ||
+ | <pre> | ||
+ | IthGenDfMultMat(BBS,OO,I): computes the generic deg-filt mult. matrix | ||
+ | for x[I] with respect to the order ideal OO. | ||
+ | input: I pos integer, OO order ideal in K[x[1..N]], BBS the bb poly ring of OO | ||
+ | output: matrix of size Mu x Mu over the ring BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[BBscheme]] | ||
+ | <pre> | ||
+ | BBscheme(BBS,OO): computes the defining equations of the border basis scheme | ||
+ | using the commutators of the multiplication matrices. | ||
+ | input: OO is an order ideal, BBS is the bb poly ring of OO | ||
+ | output: an ideal in the ring BBS = K[c_{ij}] | ||
+ | </pre> | ||
+ | [[IdealOfBBScheme]] | ||
+ | <pre> | ||
+ | IdealOfBBScheme(BBS,OO): the same as BBscheme(BBS,OO). | ||
+ | </pre> | ||
+ | [[DfBBscheme]] | ||
+ | <pre> | ||
+ | DfBBscheme(BBS,OO): computes the defining equations of the deg-filt BB scheme | ||
+ | using the commutators of the multiplication matrices. | ||
+ | input: OO is an order ideal, BBS is the bb poly ring of OO | ||
+ | output: an ideal in the ring BBS = K[c_{ij}] | ||
+ | </pre> | ||
+ | [[IdealOfDfBBscheme]] | ||
+ | <pre> | ||
+ | IdealOfDfBBscheme(BBS,OO): the same as DfBBscheme(BBS,OO). | ||
+ | </pre> | ||
+ | [[HomBBscheme]] | ||
+ | <pre> | ||
+ | HomBBscheme(BBS,OO): compute the defining equations of the homog. BB scheme | ||
+ | using the commutators of the generic homog mult matrices. | ||
+ | input: OO order ideal, BBS is the bb poly ring of OO | ||
+ | output: an ideal in the ring BBS = K[c_{ij}] | ||
+ | </pre> | ||
+ | [[IdealOfHomBBscheme]] | ||
+ | <pre> | ||
+ | IdealOfHomBBscheme(BBS,OO): the same as HomBBscheme(BBS,OO). | ||
+ | </pre> | ||
+ | [[RingOfFamily]] | ||
+ | <pre> | ||
+ | RingOfFamily(OO): forms the ring of universal bb family. | ||
+ | input: OO is an order ideal in K[x[1..N]] | ||
+ | output: the ring of univ bb family K[c_ij,x[1..N]] | ||
+ | </pre> | ||
+ | [[GenericBB]] | ||
+ | <pre> | ||
+ | GenericBB(UF,OO): computes the 'generic' border prebasis w.r.t. OO | ||
+ | i.e. the polys g_j = b_j - sum_i c_{ij} t_i. | ||
+ | input: OO is the order ideal in K[x[1..N]]"; | ||
+ | UF=K[c_ij,x[1..N]] is the ring of universal bb family of OO | ||
+ | output: list of Poly in UF | ||
+ | </pre> | ||
+ | [[GenericHomBB]] | ||
+ | <pre> | ||
+ | GenericHomBB(UF,OO): computes the 'generic' homog. border basis w.r.t. OO | ||
+ | input: OO is the order ideal in K[x[1..N]]"; | ||
+ | UF=K[c_ij,x[1..N]] is the ring of universal bb family of OO | ||
+ | output: list of Poly in UF | ||
+ | </pre> | ||
+ | [[MultMat]] | ||
+ | <pre> | ||
+ | MultMat(I,OO,BB): returns the multiplication matrix associated to the | ||
+ | border basis BB with respect to the I-th indet of the poly ring. | ||
+ | input: integer index I, list of terms OO, list of poly BB | ||
+ | output: matrix | ||
+ | </pre> | ||
+ | [[CoeffOfBB]] | ||
+ | <pre> | ||
+ | CoeffOfBB(BB,OO): returns the coefficient matrix of the border basis BB. | ||
+ | input: list of poly BB, list of terms OO | ||
+ | output: matrix | ||
+ | </pre> | ||
+ | [[NDneighbors]] | ||
+ | <pre> | ||
+ | NDneighbors(BBS,OO): computes the list of next-door neighbors w.r.t. OO. | ||
+ | input: OO is an order ideal, BBS is the bb poly ring of OO | ||
+ | output: list of triples [i,j,k] s.t. b_i = x_k * b_j | ||
+ | </pre> | ||
+ | [[ARneighbors]] | ||
+ | <pre> | ||
+ | ARneighbors(BBS,OO): computes the list of across-the-rim neighbors w.r.t. OO. | ||
+ | input: OO is an order ideal, BBS is the bb poly ring of OO | ||
+ | output: List of [i,j,k,l,m] s.t. x_k*b_i = x_l*b_j, b_i = x_l*t_m | ||
+ | and b_j = x_k*t_m for some t_m in OO (l>k) | ||
+ | </pre> | ||
+ | [[ASneighbors]] | ||
+ | <pre> | ||
+ | ASneighbors(BBS,OO): computes the list of across-the-street neighbors w.r.t. OO. | ||
+ | input: OO is an order ideal, BBS is the bb poly ring of OO | ||
+ | output: List of quadruples [i,j,k,l] s.t. x_k*b_i = x_l*b_j | ||
+ | </pre> | ||
+ | [[LiftND]] | ||
+ | <pre> | ||
+ | LiftND(BBS,OO): computes the equations defining the border basis scheme | ||
+ | and coming from the lifting of next-door neighbors. | ||
+ | input: OO is an order ideal, BBS is the bb poly ring of OO | ||
+ | output: list of poly in the ring BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[LiftAR]] | ||
+ | <pre> | ||
+ | LiftAR(BBS,OO): computes the equations defining the border basis scheme | ||
+ | and coming from the lifting of across-the-rim neighbors. | ||
+ | input: OO is an order ideal, BBS is the bb poly ring of OO | ||
+ | output: list of poly in the ring BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[LiftAS]] | ||
+ | <pre> | ||
+ | LiftAS(BBS,OO): computes the equations defining the border basis scheme | ||
+ | and coming from the lifting of across-the-street neighbors. | ||
+ | input: OO is an order ideal, BBS is the bb poly ring of OO | ||
+ | output: list of poly in the ring BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[LiftHomND]] | ||
+ | <pre> | ||
+ | LiftHomND(BBS,OO): computes the equations defining the homog. BB scheme | ||
+ | and coming from the lifting of next-door neighbors. | ||
+ | input: OO is an order ideal, BBS is the bb poly ring of OO | ||
+ | output: list of poly in the ring BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[LiftHomAS]] | ||
+ | <pre> | ||
+ | LiftHomAS(BBS,OO): computes the equations defining the homog. BB scheme | ||
+ | and coming from the lifting of across-the-street neighbors. | ||
+ | input: OO is an order ideal, BBS is the bb poly ring of OO | ||
+ | output: list of poly in the ring BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[NDgens]] | ||
+ | <pre> | ||
+ | NDgens(BBS,K,OO): computes the generators of the defining ideal of the border basis scheme | ||
+ | corresponding to the lifting of the K-th element of NDneighbors(BBS,OO). | ||
+ | input: K=index of a NDneighbor, OO order ideal, BBS bb poly ring | ||
+ | output: list of polynomials in BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[ARgens]] | ||
+ | <pre> | ||
+ | ARgens(BBS,K,OO): computes the generators of the defining ideal of the border basis scheme | ||
+ | corresponding to the lifting of the K-th element of ARneighbors(BBS,OO). | ||
+ | input: K=index of an ARneighbor, OO order ideal, BBS bb poly ring | ||
+ | output: list of polynomials in BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[ASgens]] | ||
+ | <pre> | ||
+ | ASgens(BBS,K,OO): computes the generators of the defining ideal of the border basis scheme | ||
+ | corresponding to the lifting of the K-th element of ASneighbors(BBS,OO). | ||
+ | input: K=index of a ASneighbor, OO order ideal, BBS bb poly ring | ||
+ | output: list of polynomials in BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[NatIdealOfBBS]] | ||
+ | <pre> | ||
+ | NatIdealOfBBS(BBS,OO): computes the defining ideal of border basis scheme of OO with natural generators. | ||
+ | input: OO is an order ideal, BBS is the bb poly ring of OO | ||
+ | output: A set of natural generators of I_BO | ||
+ | </pre> | ||
+ | [[HomNDgens]] | ||
+ | <pre> | ||
+ | HomNDgens(BBS,K,OO): computes the generators of the vanishing ideal of the homogeneous border basis scheme | ||
+ | corresp. to the lifting of the K-th element of NDneighbors(BBS,OO). | ||
+ | input: K=index of a NDneighbor, OO order ideal, BBS bb poly ring | ||
+ | output: list of polynomials in BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[HomASgens]] | ||
+ | <pre> | ||
+ | HomASgens(BBS,K,OO): computes the generators of the vanishing ideal of the | ||
+ | homogeneous border basis scheme corresp. to the lifting of | ||
+ | the K-th element of ASneighbors(BBS,OO). | ||
+ | input: K=index of a ASneighbor, OO order ideal, BBS bb poly ring | ||
+ | output: list of polynomials in BBS=K[c_{ij}] | ||
+ | </pre> | ||
+ | [[LiftHomND]] | ||
+ | <pre> | ||
+ | LiftHomND(BBS,OO): computes the equations defining the homog BBsch | ||
+ | and coming from the lifting of ND-neighbors (using Spoly). | ||
+ | input: OO order ideal, BBS bb poly ring | ||
+ | output: list of generators of I_BO^hom lifting of NDs | ||
+ | </pre> | ||
+ | [[LiftHomAS]] | ||
+ | <pre> | ||
+ | LiftHomAS(BBS,OO): computes the equations defining the homog BBsch | ||
+ | and coming from the lifting of AS-neighbors (using Spoly). | ||
+ | input: OO order ideal, BBS bb poly ring | ||
+ | output: list of generators of I_BO^hom lifting of ASs | ||
</pre> | </pre> | ||
== List of support functions == | == List of support functions == | ||
+ | |||
+ | <pre> | ||
+ | LinPart(P,F): computes the homogeneous part of degree 1. | ||
+ | input: P = Poly ring, F = Poly or list of Poly | ||
+ | output: Poly or list of Poly | ||
+ | </pre> | ||
+ | <pre> | ||
+ | RLF(P,F): RLF of a polynomial returns its linear form which vanishes at the origin, independently of the grading. | ||
+ | RLF of a list of poly or an ideal I returns the reduced GB of the ideal generatd by the RLF of the Gens of I. | ||
+ | input: P = Poly ring, F = Poly or list of Poly or ideal | ||
+ | output: Poly or list of Poly | ||
+ | </pre> | ||
+ | <pre> | ||
+ | CoeffPoly(P,T,F,X): find the 'multivariate' coefficient of a term in a poly. | ||
+ | input: P = Poly ring, T term, F poly, X set of indets | ||
+ | output: polynomial coefficent of T in F such that no coefficient is in <X> | ||
+ | </pre> | ||
+ | <pre> | ||
+ | DF(P,F): degree form of a polynomial F. | ||
+ | input: P = Poly ring, F poly | ||
+ | output: Poly | ||
+ | </pre> | ||
+ | <pre> | ||
+ | Ccolumn(BBS, J): contructs the column (C[1,J],...,C[Mu,J])^{tr}. | ||
+ | input: BBS is the bb poly ring, J In 1..Nu | ||
+ | output: a (Mu x 1)-matrix of indets | ||
+ | </pre> | ||
+ | <pre> | ||
+ | HomCcolumn(BBS,J,OO): contructs the 'homogeneous' column (D[1,J],...,D[Mu,J])^{tr} | ||
+ | where D[I,J]=C[I,J] if Deg(t_i)=Deg(b_j) and D[I,J]=0 otherwise. | ||
+ | input: BBS is the bb poly ring, J In 1..Nu, OO order ideal | ||
+ | output: a (Mu x 1)-matrix of indets | ||
+ | </pre> | ||
+ | <pre> | ||
+ | IsListOfTerms(L): checks if a list is a list of terms. | ||
+ | input: non-empty LIST of POLY | ||
+ | output: TRUE if L is a list of terms, FALSE otherwise | ||
+ | </pre> | ||
+ | <pre> | ||
+ | ArrDeg(BBS, OO, opt L): computes the triple [indet, arrow-degree, arrow] of the indeterminates in L. | ||
+ | input: BBS is the bb poly ring, L list of indets of BBS, OO order ideal | ||
+ | output: [indet, arrow-degree, arrow] | ||
+ | </pre> | ||
+ | <pre> | ||
+ | TotArrDeg(BBS, OO, opt L): computes the triple [indet, Total arrow-degree, arrow] of the indeterminates in L. | ||
+ | input: BBS is the bb poly ring, L list of indets of BBS, OO order ideal | ||
+ | output: [indet, Total arrow-degree, arrow] | ||
+ | </pre> | ||
+ | <pre> | ||
+ | NonNegTotArrDeg(BBS, OO, opt L): computes the indets with non-negative total-arrow-degree. | ||
+ | input: BBS is the bb poly ring, L list of indets of BBS, OO order ideal | ||
+ | output: list of indets"; | ||
+ | </pre> | ||
+ | <pre> | ||
+ | PositiveArrow(BBS, OO, opt L): computes the indets with positive total-arrow-degree. | ||
+ | input: BBS is the bb poly ring, L list of indets of BBS, OO order ideal | ||
+ | output: list of indets | ||
+ | </pre> | ||
+ | <pre> | ||
+ | ZeroTotArrDeg(BBS, OO, opt L): computes the indets with zero total-arrow-degree. | ||
+ | input: BBS is the bb poly ring, L list of indets of BBS, OO order ideal | ||
+ | output: list of indets | ||
+ | </pre> | ||
+ | <pre> | ||
+ | InteriorCij(BBS,OO): computes the indeterminates in BBS associated to the interior terms in OO | ||
+ | input: OO order ideal, BBS is the bb poly ring | ||
+ | output: list of interior indets | ||
+ | </pre> | ||
== Example for computations == | == Example for computations == | ||
+ | |||
+ | Let us apply several functions in the package <code>borderbasis</code> to an explicit example. | ||
+ | |||
+ | <pre> | ||
+ | Use P :: = QQ[x,y]; | ||
+ | OO := [one(P), y, x, x*y, x^3]; | ||
+ | -- | ||
+ | --1. checks order ideals | ||
+ | BB.IsOrderIdeal(OO); | ||
+ | false | ||
+ | OO := [one(P), y, x, y^2]; | ||
+ | BB.IsOrderIdeal(OO); | ||
+ | true | ||
+ | -- | ||
+ | --2. computes index of a term w.r.t. OO | ||
+ | BB.IndexO(P, x^5*y^2, OO); | ||
+ | 5 | ||
+ | -- | ||
+ | --3. computes "box" border | ||
+ | BB.Box(P,[1,2]); | ||
+ | [1, y, x, y^2, x*y, x*y^2] | ||
+ | -- | ||
+ | --4. computes border | ||
+ | BO := BB.Border(OO); BO; | ||
+ | [x*y, x^2, y^3, x*y^2] | ||
+ | -- | ||
+ | --5. computes the border basis of <F> w.r.t. OO | ||
+ | F := [x*y -x, x^2+2*x, y^3-2*y+1]; | ||
+ | BB.BBasisForOI(F,OO); | ||
+ | [x*y -x, x^2 +2*x, y^3 -2*y +1, x*y^2 -x] | ||
+ | -- | ||
+ | --6. border division algorithm | ||
+ | F := x^4+y^4; | ||
+ | Prebasis := [x*y -x, x^2 +2*x, y^3 -2*y +1, x*y^2 -x]; | ||
+ | BB.BorderDivAlg(P,F,OO,Prebasis); | ||
+ | record[Quotients := [0, x^2 -2*x +4, y, 0], Remainder := 2*y^2 -8*x -y] | ||
+ | BB.BorderDivAlgForCoeffs(P,F,OO,Prebasis); | ||
+ | [0, -1, -8, 2] | ||
+ | -- | ||
+ | --7. creates the bb poly ring | ||
+ | BBS := BB.BBRing(OO); | ||
+ | Use BBS; | ||
+ | NumIndets(BBS); | ||
+ | 16 | ||
+ | -- | ||
+ | --8. computes generic mult matrices | ||
+ | GMM := BB.GenMultMat(BBS,OO); indent(GMM[1]); | ||
+ | matrix( /*RingWithID(9, "QQ[...]")*/ | ||
+ | [[0, c[1,1], c[1,2], c[1,4]], | ||
+ | [0, c[2,1], c[2,2], c[2,4]], | ||
+ | [1, c[3,1], c[3,2], c[3,4]], | ||
+ | [0, c[4,1], c[4,2], c[4,4]]])) | ||
+ | BB.IthGenMultMat(BBS,OO,1); --the same mat | ||
+ | -- | ||
+ | GHMM:=BB.GenHomMultMat(BBS,OO); indent(GHMM[1]); | ||
+ | matrix( /*RingWithID(9, "QQ[...]")*/ | ||
+ | [[0, 0, 0, 0], | ||
+ | [0, 0, 0, 0], | ||
+ | [1, 0, 0, 0], | ||
+ | [0, c[4,1], c[4,2], 0]]) | ||
+ | BB.IthGenHomMultMat(BBS,OO,1); --the same mat | ||
+ | -- | ||
+ | --9. computes the defining ideal of BBscheme | ||
+ | IBO := BB.BBscheme(BBS,OO); | ||
+ | IBO := BB.IdealOfBBScheme(BBS,OO); | ||
+ | IBO := BB.NatIdealOfBBS(BBS,OO); | ||
+ | Ge := Gens(IBO); len(Ge); | ||
+ | 12 | ||
+ | -- | ||
+ | --10. creates the ring of universal bb family | ||
+ | UF := BB.RingOfFamily(OO); | ||
+ | -- | ||
+ | --11. computes the generic border prebasis | ||
+ | GBB := BB.GenericBB(UF,OO); indent(GBB); | ||
+ | [ | ||
+ | -c[4,1]*y^2 -c[3,1]*x -c[2,1]*y +x*y -c[1,1], | ||
+ | -c[4,2]*y^2 -c[3,2]*x +x^2 -c[2,2]*y -c[1,2], | ||
+ | -c[4,3]*y^2 +y^3 -c[3,3]*x -c[2,3]*y -c[1,3], | ||
+ | -c[4,4]*y^2 +x*y^2 -c[3,4]*x -c[2,4]*y -c[1,4] | ||
+ | ] | ||
+ | -- | ||
+ | --12. computes the mult matrix assoc. to the border basis BB | ||
+ | Use P; BB := [x*y -x, x^2 +2*x, y^3 -2*y +1, x*y^2 -x]; | ||
+ | BB.MultMat(1,OO,BB); | ||
+ | matrix(QQ, | ||
+ | [[0, 0, 0, 0, 0], | ||
+ | [0, 0, 0, 0, 0], | ||
+ | [1, 1, -2, 1, 1], | ||
+ | [0, 0, 0, 0, 0], | ||
+ | [0, 0, 0, 0, 0]]) | ||
+ | -- | ||
+ | --13. computes the coeff matrix of BB | ||
+ | BB.CoeffOfBB(BB,OO); | ||
+ | matrix(QQ, | ||
+ | [[0, 0, 1, 0], | ||
+ | [0, 0, -2, 0], | ||
+ | [-1, 2, 0, -1], | ||
+ | [0, 0, 0, 0]])) | ||
+ | -- | ||
+ | --14. Form ND, AR, AS neighbours | ||
+ | Use BBS; | ||
+ | BB.NDneighbors(BBS,OO); | ||
+ | [[4, 1, 2]] | ||
+ | BB.ARneighbors(BBS,OO); | ||
+ | [[1, 2, 1, 2, 3], [3, 4, 1, 2, 4]] | ||
+ | BB.ASneighbors(BBS,OO); | ||
+ | [[1, 2, 1, 2], [3, 4, 1, 2]] | ||
+ | BB.LiftND(BBS,OO); | ||
+ | [-c[1,1]*c[3,1] -c[1,3]*c[4,1] +c[1,4], -c[2,1]*c[3,1] -c[2,3]*c[4,1] -c[1,1] +c[2,4], | ||
+ | -c[3,1]^2 -c[3,3]*c[4,1] +c[3,4], -c[3,1]*c[4,1] -c[4,1]*c[4,3] -c[2,1] +c[4,4]] | ||
+ | BB.LiftAR(BBS,OO); | ||
+ | [c[1,1]*c[2,1] +c[1,2]*c[3,1] -c[1,1]*c[3,2] +c[1,4]*c[4,1] -c[1,3]*c[4,2], | ||
+ | c[2,1]^2 +c[2,2]*c[3,1] -c[2,1]*c[3,2] +c[2,4]*c[4,1] -c[2,3]*c[4,2] -c[1,2], | ||
+ | c[2,1]*c[3,1] +c[3,4]*c[4,1] -c[3,3]*c[4,2] +c[1,1], | ||
+ | c[2,1]*c[4,1] -c[3,2]*c[4,1] +c[3,1]*c[4,2] -c[4,2]*c[4,3] +c[4,1]*c[4,4] -c[2,2], | ||
+ | c[1,1]*c[2,3] +c[1,2]*c[3,3] -c[1,1]*c[3,4] +c[1,4]*c[4,3] -c[1,3]*c[4,4], | ||
+ | c[2,1]*c[2,3] +c[2,2]*c[3,3] -c[2,1]*c[3,4] +c[2,4]*c[4,3] -c[2,3]*c[4,4] -c[1,4], | ||
+ | c[2,3]*c[3,1] +c[3,2]*c[3,3] -c[3,1]*c[3,4] +c[3,4]*c[4,3] -c[3,3]*c[4,4] +c[1,3], | ||
+ | c[2,3]*c[4,1] -c[3,4]*c[4,1] +c[3,3]*c[4,2] -c[2,4]] | ||
+ | BB.LiftAS(BBS,OO); | ||
+ | [c[1,1]*c[2,1] +c[1,2]*c[3,1] -c[1,1]*c[3,2] +c[1,4]*c[4,1] -c[1,3]*c[4,2], | ||
+ | c[2,1]^2 +c[2,2]*c[3,1] -c[2,1]*c[3,2] +c[2,4]*c[4,1] -c[2,3]*c[4,2] -c[1,2], | ||
+ | c[2,1]*c[3,1] +c[3,4]*c[4,1] -c[3,3]*c[4,2] +c[1,1], | ||
+ | c[2,1]*c[4,1] -c[3,2]*c[4,1] +c[3,1]*c[4,2] -c[4,2]*c[4,3] +c[4,1]*c[4,4] -c[2,2], | ||
+ | c[1,1]*c[2,3] +c[1,2]*c[3,3] -c[1,1]*c[3,4] +c[1,4]*c[4,3] -c[1,3]*c[4,4], | ||
+ | c[2,1]*c[2,3] +c[2,2]*c[3,3] -c[2,1]*c[3,4] +c[2,4]*c[4,3] -c[2,3]*c[4,4] -c[1,4], | ||
+ | c[2,3]*c[3,1] +c[3,2]*c[3,3] -c[3,1]*c[3,4] +c[3,4]*c[4,3] -c[3,3]*c[4,4] +c[1,3], | ||
+ | c[2,3]*c[4,1] -c[3,4]*c[4,1] +c[3,3]*c[4,2] -c[2,4]] | ||
+ | </pre> | ||
+ | |||
− | |||
[[Category:Package borderbasis]] | [[Category:Package borderbasis]] | ||
[[Category:ApCoCoA Packages]] | [[Category:ApCoCoA Packages]] |
Latest revision as of 00:54, 18 November 2022
This article is about a function from ApCoCoA-2. If you are looking for the ApCoCoA-1 version of it, see Category:ApCoCoA-1:Package borderbasis. |
This page describes the borderbasis
package. The package contains various functions for computing with border bases of order ideals in a polynomial ring P=K[x_1,...,x_n] over a field K. We refer the book [M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2, Springer-Verlag, Berlin, 2005] for more details about border bases. For a complete list of functions, see also Category:Package borderbasis.
The Global Alias of the package is BB
.
List of the main functions
IsOrderIdeal(OO): checks whether OO is an order ideal. input: OO a non-empty set of terms in K[x[1..N]] output: boolean value for checking OO being an order ideal
IndexO(P,T,OO): returns index of a term in K[x[1..N]]w.r.t an order ideal OO. input: T a term in P= K[x[1..N]], OO an oder ideal in P output: the index of T w.r.t. OO
Border(OO): computes the border of an order ideal. input: list of terms output: list of terms in ascending order
Box(P,D): computes the 'box' order ideal of type D=[D1,..,DN]. input: list of integers D of length NumIndets(P), P=K[x[1..N]] output: list of terms (sorted w.r.t. current TO)
BBasisForOI(F,OO): computes the border basis of the ideal I=<F> with respect to the order ideal OO, gives an error messages if no border basis exists, uses the O_sigma(I) border basis and the BB transformation. input: list of poly F, list of terms OO output: list of poly
BorderDivAlg(P,F,OO,Prebasis): applies the Border Division Algorithm w.r.t. the order ideal OO and the border prebasis Prebasis to the polynomial F and returns a record with fields Quotients and Remainder where Remainder is the normal OO-remainder of F. input: poly F, list of terms OO, list of poly Prebasis output: record with two fields Quotients and Remainder
BorderDivAlgForCoeffs(P,F,OO,Prebasis): applies BorderDivAlg to form a list La in P such that F has a presentation of form F=La[1]*OO[1]+...+La[Mu]*OO[Mu]+H, H in <Prebasis>. input: poly F, list of terms OO, list of poly Prebasis output: list of polys of length Mu=len(OO)
BBRing(OO): creates the (standard) bb poly ring of OO. input: list of terms OO in K[x[1..N]] output: the ring K[c_ij] of OO
GenMultMat(BBS,OO): computes the generic multiplication matrices with respect to the order ideal OO. input: BBS the bb poly ring of OO, OO order ideal in K[x[1..N]] output: matrices of size Mu x Mu over the ring BBS=K[c_{ij}]
IthGenMultMat(BBS,OO,I): computes the generic multiplication matrix for x[I] with respect to the order ideal OO. input: I pos integer, OO order ideal in K[x[1..N]], BBS the bb poly ring of OO output: matrix of size Mu x Mu over the ring BBS=K[c_{ij}]
GenHomMultMat(BBS,OO): computes the generic homog. mult. matrices with respect to the order ideal OO. input: BBS the bb poly ring of OO, OO order ideal in K[x[1..N]] output: matrices of size Mu x Mu over the ring BBS=K[c_{ij}]
IthGenHomMultMat(BBS,OO,I): computes the generic homog. mult. matrix for x[I] with respect to the order ideal OO. input: I pos integer, OO order ideal in K[x[1..N]], BBS the bb poly ring of OO output: matrix of size Mu x Mu over the ring BBS=K[c_{ij}]
GenDfMultMat(BBS,OO): computes the generic deg-filt mult. matrices with respect to the order ideal OO. input: BBS the bb poly ring of OO, OO order ideal in K[x[1..N]] output: matrices of size Mu x Mu over the ring BBS=K[c_{ij}]
IthGenDfMultMat(BBS,OO,I): computes the generic deg-filt mult. matrix for x[I] with respect to the order ideal OO. input: I pos integer, OO order ideal in K[x[1..N]], BBS the bb poly ring of OO output: matrix of size Mu x Mu over the ring BBS=K[c_{ij}]
BBscheme(BBS,OO): computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. input: OO is an order ideal, BBS is the bb poly ring of OO output: an ideal in the ring BBS = K[c_{ij}]
IdealOfBBScheme(BBS,OO): the same as BBscheme(BBS,OO).
DfBBscheme(BBS,OO): computes the defining equations of the deg-filt BB scheme using the commutators of the multiplication matrices. input: OO is an order ideal, BBS is the bb poly ring of OO output: an ideal in the ring BBS = K[c_{ij}]
IdealOfDfBBscheme(BBS,OO): the same as DfBBscheme(BBS,OO).
HomBBscheme(BBS,OO): compute the defining equations of the homog. BB scheme using the commutators of the generic homog mult matrices. input: OO order ideal, BBS is the bb poly ring of OO output: an ideal in the ring BBS = K[c_{ij}]
IdealOfHomBBscheme(BBS,OO): the same as HomBBscheme(BBS,OO).
RingOfFamily(OO): forms the ring of universal bb family. input: OO is an order ideal in K[x[1..N]] output: the ring of univ bb family K[c_ij,x[1..N]]
GenericBB(UF,OO): computes the 'generic' border prebasis w.r.t. OO i.e. the polys g_j = b_j - sum_i c_{ij} t_i. input: OO is the order ideal in K[x[1..N]]"; UF=K[c_ij,x[1..N]] is the ring of universal bb family of OO output: list of Poly in UF
GenericHomBB(UF,OO): computes the 'generic' homog. border basis w.r.t. OO input: OO is the order ideal in K[x[1..N]]"; UF=K[c_ij,x[1..N]] is the ring of universal bb family of OO output: list of Poly in UF
MultMat(I,OO,BB): returns the multiplication matrix associated to the border basis BB with respect to the I-th indet of the poly ring. input: integer index I, list of terms OO, list of poly BB output: matrix
CoeffOfBB(BB,OO): returns the coefficient matrix of the border basis BB. input: list of poly BB, list of terms OO output: matrix
NDneighbors(BBS,OO): computes the list of next-door neighbors w.r.t. OO. input: OO is an order ideal, BBS is the bb poly ring of OO output: list of triples [i,j,k] s.t. b_i = x_k * b_j
ARneighbors(BBS,OO): computes the list of across-the-rim neighbors w.r.t. OO. input: OO is an order ideal, BBS is the bb poly ring of OO output: List of [i,j,k,l,m] s.t. x_k*b_i = x_l*b_j, b_i = x_l*t_m and b_j = x_k*t_m for some t_m in OO (l>k)
ASneighbors(BBS,OO): computes the list of across-the-street neighbors w.r.t. OO. input: OO is an order ideal, BBS is the bb poly ring of OO output: List of quadruples [i,j,k,l] s.t. x_k*b_i = x_l*b_j
LiftND(BBS,OO): computes the equations defining the border basis scheme and coming from the lifting of next-door neighbors. input: OO is an order ideal, BBS is the bb poly ring of OO output: list of poly in the ring BBS=K[c_{ij}]
LiftAR(BBS,OO): computes the equations defining the border basis scheme and coming from the lifting of across-the-rim neighbors. input: OO is an order ideal, BBS is the bb poly ring of OO output: list of poly in the ring BBS=K[c_{ij}]
LiftAS(BBS,OO): computes the equations defining the border basis scheme and coming from the lifting of across-the-street neighbors. input: OO is an order ideal, BBS is the bb poly ring of OO output: list of poly in the ring BBS=K[c_{ij}]
LiftHomND(BBS,OO): computes the equations defining the homog. BB scheme and coming from the lifting of next-door neighbors. input: OO is an order ideal, BBS is the bb poly ring of OO output: list of poly in the ring BBS=K[c_{ij}]
LiftHomAS(BBS,OO): computes the equations defining the homog. BB scheme and coming from the lifting of across-the-street neighbors. input: OO is an order ideal, BBS is the bb poly ring of OO output: list of poly in the ring BBS=K[c_{ij}]
NDgens(BBS,K,OO): computes the generators of the defining ideal of the border basis scheme corresponding to the lifting of the K-th element of NDneighbors(BBS,OO). input: K=index of a NDneighbor, OO order ideal, BBS bb poly ring output: list of polynomials in BBS=K[c_{ij}]
ARgens(BBS,K,OO): computes the generators of the defining ideal of the border basis scheme corresponding to the lifting of the K-th element of ARneighbors(BBS,OO). input: K=index of an ARneighbor, OO order ideal, BBS bb poly ring output: list of polynomials in BBS=K[c_{ij}]
ASgens(BBS,K,OO): computes the generators of the defining ideal of the border basis scheme corresponding to the lifting of the K-th element of ASneighbors(BBS,OO). input: K=index of a ASneighbor, OO order ideal, BBS bb poly ring output: list of polynomials in BBS=K[c_{ij}]
NatIdealOfBBS(BBS,OO): computes the defining ideal of border basis scheme of OO with natural generators. input: OO is an order ideal, BBS is the bb poly ring of OO output: A set of natural generators of I_BO
HomNDgens(BBS,K,OO): computes the generators of the vanishing ideal of the homogeneous border basis scheme corresp. to the lifting of the K-th element of NDneighbors(BBS,OO). input: K=index of a NDneighbor, OO order ideal, BBS bb poly ring output: list of polynomials in BBS=K[c_{ij}]
HomASgens(BBS,K,OO): computes the generators of the vanishing ideal of the homogeneous border basis scheme corresp. to the lifting of the K-th element of ASneighbors(BBS,OO). input: K=index of a ASneighbor, OO order ideal, BBS bb poly ring output: list of polynomials in BBS=K[c_{ij}]
LiftHomND(BBS,OO): computes the equations defining the homog BBsch and coming from the lifting of ND-neighbors (using Spoly). input: OO order ideal, BBS bb poly ring output: list of generators of I_BO^hom lifting of NDs
LiftHomAS(BBS,OO): computes the equations defining the homog BBsch and coming from the lifting of AS-neighbors (using Spoly). input: OO order ideal, BBS bb poly ring output: list of generators of I_BO^hom lifting of ASs
List of support functions
LinPart(P,F): computes the homogeneous part of degree 1. input: P = Poly ring, F = Poly or list of Poly output: Poly or list of Poly
RLF(P,F): RLF of a polynomial returns its linear form which vanishes at the origin, independently of the grading. RLF of a list of poly or an ideal I returns the reduced GB of the ideal generatd by the RLF of the Gens of I. input: P = Poly ring, F = Poly or list of Poly or ideal output: Poly or list of Poly
CoeffPoly(P,T,F,X): find the 'multivariate' coefficient of a term in a poly. input: P = Poly ring, T term, F poly, X set of indets output: polynomial coefficent of T in F such that no coefficient is in <X>
DF(P,F): degree form of a polynomial F. input: P = Poly ring, F poly output: Poly
Ccolumn(BBS, J): contructs the column (C[1,J],...,C[Mu,J])^{tr}. input: BBS is the bb poly ring, J In 1..Nu output: a (Mu x 1)-matrix of indets
HomCcolumn(BBS,J,OO): contructs the 'homogeneous' column (D[1,J],...,D[Mu,J])^{tr} where D[I,J]=C[I,J] if Deg(t_i)=Deg(b_j) and D[I,J]=0 otherwise. input: BBS is the bb poly ring, J In 1..Nu, OO order ideal output: a (Mu x 1)-matrix of indets
IsListOfTerms(L): checks if a list is a list of terms. input: non-empty LIST of POLY output: TRUE if L is a list of terms, FALSE otherwise
ArrDeg(BBS, OO, opt L): computes the triple [indet, arrow-degree, arrow] of the indeterminates in L. input: BBS is the bb poly ring, L list of indets of BBS, OO order ideal output: [indet, arrow-degree, arrow]
TotArrDeg(BBS, OO, opt L): computes the triple [indet, Total arrow-degree, arrow] of the indeterminates in L. input: BBS is the bb poly ring, L list of indets of BBS, OO order ideal output: [indet, Total arrow-degree, arrow]
NonNegTotArrDeg(BBS, OO, opt L): computes the indets with non-negative total-arrow-degree. input: BBS is the bb poly ring, L list of indets of BBS, OO order ideal output: list of indets";
PositiveArrow(BBS, OO, opt L): computes the indets with positive total-arrow-degree. input: BBS is the bb poly ring, L list of indets of BBS, OO order ideal output: list of indets
ZeroTotArrDeg(BBS, OO, opt L): computes the indets with zero total-arrow-degree. input: BBS is the bb poly ring, L list of indets of BBS, OO order ideal output: list of indets
InteriorCij(BBS,OO): computes the indeterminates in BBS associated to the interior terms in OO input: OO order ideal, BBS is the bb poly ring output: list of interior indets
Example for computations
Let us apply several functions in the package borderbasis
to an explicit example.
Use P :: = QQ[x,y]; OO := [one(P), y, x, x*y, x^3]; -- --1. checks order ideals BB.IsOrderIdeal(OO); false OO := [one(P), y, x, y^2]; BB.IsOrderIdeal(OO); true -- --2. computes index of a term w.r.t. OO BB.IndexO(P, x^5*y^2, OO); 5 -- --3. computes "box" border BB.Box(P,[1,2]); [1, y, x, y^2, x*y, x*y^2] -- --4. computes border BO := BB.Border(OO); BO; [x*y, x^2, y^3, x*y^2] -- --5. computes the border basis of <F> w.r.t. OO F := [x*y -x, x^2+2*x, y^3-2*y+1]; BB.BBasisForOI(F,OO); [x*y -x, x^2 +2*x, y^3 -2*y +1, x*y^2 -x] -- --6. border division algorithm F := x^4+y^4; Prebasis := [x*y -x, x^2 +2*x, y^3 -2*y +1, x*y^2 -x]; BB.BorderDivAlg(P,F,OO,Prebasis); record[Quotients := [0, x^2 -2*x +4, y, 0], Remainder := 2*y^2 -8*x -y] BB.BorderDivAlgForCoeffs(P,F,OO,Prebasis); [0, -1, -8, 2] -- --7. creates the bb poly ring BBS := BB.BBRing(OO); Use BBS; NumIndets(BBS); 16 -- --8. computes generic mult matrices GMM := BB.GenMultMat(BBS,OO); indent(GMM[1]); matrix( /*RingWithID(9, "QQ[...]")*/ [[0, c[1,1], c[1,2], c[1,4]], [0, c[2,1], c[2,2], c[2,4]], [1, c[3,1], c[3,2], c[3,4]], [0, c[4,1], c[4,2], c[4,4]]])) BB.IthGenMultMat(BBS,OO,1); --the same mat -- GHMM:=BB.GenHomMultMat(BBS,OO); indent(GHMM[1]); matrix( /*RingWithID(9, "QQ[...]")*/ [[0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [0, c[4,1], c[4,2], 0]]) BB.IthGenHomMultMat(BBS,OO,1); --the same mat -- --9. computes the defining ideal of BBscheme IBO := BB.BBscheme(BBS,OO); IBO := BB.IdealOfBBScheme(BBS,OO); IBO := BB.NatIdealOfBBS(BBS,OO); Ge := Gens(IBO); len(Ge); 12 -- --10. creates the ring of universal bb family UF := BB.RingOfFamily(OO); -- --11. computes the generic border prebasis GBB := BB.GenericBB(UF,OO); indent(GBB); [ -c[4,1]*y^2 -c[3,1]*x -c[2,1]*y +x*y -c[1,1], -c[4,2]*y^2 -c[3,2]*x +x^2 -c[2,2]*y -c[1,2], -c[4,3]*y^2 +y^3 -c[3,3]*x -c[2,3]*y -c[1,3], -c[4,4]*y^2 +x*y^2 -c[3,4]*x -c[2,4]*y -c[1,4] ] -- --12. computes the mult matrix assoc. to the border basis BB Use P; BB := [x*y -x, x^2 +2*x, y^3 -2*y +1, x*y^2 -x]; BB.MultMat(1,OO,BB); matrix(QQ, [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, -2, 1, 1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) -- --13. computes the coeff matrix of BB BB.CoeffOfBB(BB,OO); matrix(QQ, [[0, 0, 1, 0], [0, 0, -2, 0], [-1, 2, 0, -1], [0, 0, 0, 0]])) -- --14. Form ND, AR, AS neighbours Use BBS; BB.NDneighbors(BBS,OO); [[4, 1, 2]] BB.ARneighbors(BBS,OO); [[1, 2, 1, 2, 3], [3, 4, 1, 2, 4]] BB.ASneighbors(BBS,OO); [[1, 2, 1, 2], [3, 4, 1, 2]] BB.LiftND(BBS,OO); [-c[1,1]*c[3,1] -c[1,3]*c[4,1] +c[1,4], -c[2,1]*c[3,1] -c[2,3]*c[4,1] -c[1,1] +c[2,4], -c[3,1]^2 -c[3,3]*c[4,1] +c[3,4], -c[3,1]*c[4,1] -c[4,1]*c[4,3] -c[2,1] +c[4,4]] BB.LiftAR(BBS,OO); [c[1,1]*c[2,1] +c[1,2]*c[3,1] -c[1,1]*c[3,2] +c[1,4]*c[4,1] -c[1,3]*c[4,2], c[2,1]^2 +c[2,2]*c[3,1] -c[2,1]*c[3,2] +c[2,4]*c[4,1] -c[2,3]*c[4,2] -c[1,2], c[2,1]*c[3,1] +c[3,4]*c[4,1] -c[3,3]*c[4,2] +c[1,1], c[2,1]*c[4,1] -c[3,2]*c[4,1] +c[3,1]*c[4,2] -c[4,2]*c[4,3] +c[4,1]*c[4,4] -c[2,2], c[1,1]*c[2,3] +c[1,2]*c[3,3] -c[1,1]*c[3,4] +c[1,4]*c[4,3] -c[1,3]*c[4,4], c[2,1]*c[2,3] +c[2,2]*c[3,3] -c[2,1]*c[3,4] +c[2,4]*c[4,3] -c[2,3]*c[4,4] -c[1,4], c[2,3]*c[3,1] +c[3,2]*c[3,3] -c[3,1]*c[3,4] +c[3,4]*c[4,3] -c[3,3]*c[4,4] +c[1,3], c[2,3]*c[4,1] -c[3,4]*c[4,1] +c[3,3]*c[4,2] -c[2,4]] BB.LiftAS(BBS,OO); [c[1,1]*c[2,1] +c[1,2]*c[3,1] -c[1,1]*c[3,2] +c[1,4]*c[4,1] -c[1,3]*c[4,2], c[2,1]^2 +c[2,2]*c[3,1] -c[2,1]*c[3,2] +c[2,4]*c[4,1] -c[2,3]*c[4,2] -c[1,2], c[2,1]*c[3,1] +c[3,4]*c[4,1] -c[3,3]*c[4,2] +c[1,1], c[2,1]*c[4,1] -c[3,2]*c[4,1] +c[3,1]*c[4,2] -c[4,2]*c[4,3] +c[4,1]*c[4,4] -c[2,2], c[1,1]*c[2,3] +c[1,2]*c[3,3] -c[1,1]*c[3,4] +c[1,4]*c[4,3] -c[1,3]*c[4,4], c[2,1]*c[2,3] +c[2,2]*c[3,3] -c[2,1]*c[3,4] +c[2,4]*c[4,3] -c[2,3]*c[4,4] -c[1,4], c[2,3]*c[3,1] +c[3,2]*c[3,3] -c[3,1]*c[3,4] +c[3,4]*c[4,3] -c[3,3]*c[4,4] +c[1,3], c[2,3]*c[4,1] -c[3,4]*c[4,1] +c[3,3]*c[4,2] -c[2,4]]