Difference between revisions of "Package zerodim"

From ApCoCoAWiki
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{Version|2|[[:Category:ApCoCoA-1:Package ZeroDim]]}}
 
{{Version|2|[[:Category:ApCoCoA-1:Package ZeroDim]]}}
This page describes the zerodim package. The package contains various functions for computing algebraic invariants of zero-dimensional schemes and related computations. For a complete list of functions, see [[:Category:Package zerodim]].
+
This page describes the <code>zerodim</code> package. The package contains various functions for computing algebraic invariants of zero-dimensional schemes and related computations. For a complete list of functions, see also [[:Category:Package zerodim]].
  
  
Line 17: Line 17:
 
* For <math>m\ge 0</math> the <math>m</math>-th Fitting ideal <math>\vartheta_X^{(m)}(R/K)</math> of the module of Kaehler differential 1-forms <math>\Omega^1_{R/K}</math> is called the <em>Kaehler different</em> of the algebra <math>R/K</math>.
 
* For <math>m\ge 0</math> the <math>m</math>-th Fitting ideal <math>\vartheta_X^{(m)}(R/K)</math> of the module of Kaehler differential 1-forms <math>\Omega^1_{R/K}</math> is called the <em>Kaehler different</em> of the algebra <math>R/K</math>.
  
More generally, for any <math>K</math>-algebra <math>T/S</math>, we can define the Noether different, module of Kaehler differential m-forms, Kaehler different of <math>T/S</math> analogously. In particular, if <math>T/S</math> is graded, then all these invariants are also graded.
+
More generally, for any <math>K</math>-algebra <math>T/S</math>, we can define the Noether different, module of Kaehler differential m-forms, Kaehler different of <math>T/S</math> analogously. In particular, if <math>T/S</math> is graded, then all these invariants are also graded.  
  
Now let us embed the scheme <math>X</math> in the projective <math>n</math>-space via <math>X \subseteq D_+(x_0) \subsetq\mathbb{P}^n</math>, where <math>x_0</math> is a new indeterminate. Set <math>S:=P[x_0] = K[x_0,\dots,x_n]</math> and equip <math>S</math> with the standard grading. The homogeneous vanishing ideal of <math>X</math> is the homogenization of <math>I</math> with respect to <math>x_0</math> and denoted by <math>I_X</math>, and the homogeneous coordinate ring of <math>X</math> is the graded 1-dimensional ring <math>R_X = S/I_X</math>. In this case <math>K[x_0]</math> is the Noetherian normalization of <math>R_X</math>, and hence we can define the above invariants for the graded algebra <math>R_X/K[x_0]</math>.  
+
Now let us embed the scheme <math>X</math> in the projective <math>n</math>-space via <math>X \subseteq D_+(x_0) \subseteq\mathbb{P}^n</math>, where <math>x_0</math> is a new indeterminate. Set <math>S:=P[x_0] = K[x_0,\dots,x_n]</math> and equip <math>S</math> with the standard grading. The homogeneous vanishing ideal of <math>X</math> is the homogenization of <math>I</math> with respect to <math>x_0</math> and denoted by <math>I_X</math>, and the homogeneous coordinate ring of <math>X</math> is the graded 1-dimensional ring <math>R_X = S/I_X</math>. In this case <math>K[x_0]</math> is the Noetherian normalization of <math>R_X</math>, and hence we can define the above invariants for the graded algebra <math>R_X/K[x_0]</math>. Moreover, we have the following further invariants.
  
 
* The graded <math>R_X</math>-module <math>\omega_{R_X} = \mathrm{Hom}_{K[x_0]}(R,K[x_0])(-1)</math> is called the <em>canonical module</em> of the algebra <math>R_X/K[x_0]</math>.  
 
* The graded <math>R_X</math>-module <math>\omega_{R_X} = \mathrm{Hom}_{K[x_0]}(R,K[x_0])(-1)</math> is called the <em>canonical module</em> of the algebra <math>R_X/K[x_0]</math>.  
 
* The graded locolization <math>Q^h(R_X)</math> of <math>R_X</math> at <math>x_0</math> is called the <em>homogeneous ring of quotients</em> of <math>R_X</math>.
 
* The graded locolization <math>Q^h(R_X)</math> of <math>R_X</math> at <math>x_0</math> is called the <em>homogeneous ring of quotients</em> of <math>R_X</math>.
 
* When the scheme <math>X</math> is reduced (more general, locally Gorenstein), there is an injection <math>\omega_{R_X}\hookrightarrow  Q^h(R_X)</math> and the inverse of <math>\omega_{R_X}</math> in <math>Q^h(R_X)</math> is called the <em>Dedekind different</em> of <math>R_X/K[x_0]</math>.
 
* When the scheme <math>X</math> is reduced (more general, locally Gorenstein), there is an injection <math>\omega_{R_X}\hookrightarrow  Q^h(R_X)</math> and the inverse of <math>\omega_{R_X}</math> in <math>Q^h(R_X)</math> is called the <em>Dedekind different</em> of <math>R_X/K[x_0]</math>.
 +
 +
Many interesting properties of the scheme <math>X</math> are reflexed by the algebraic structure of the above invariants.
  
 
== Package Description ==
 
== Package Description ==
All of the previously described definitions are implemented in the SAGBI package.
+
The <code>zerodim</code> package provides functions for computing the introduced invariants of zero-dimensional schemes. In the graded case the package also provides functions for computations of the Hilbert functions of these invariants. Alias of the package is <code>ZD</code>.
  
=== Basic functions ===
+
=== List of main functions ===
Given a polynomial ring <code>P</code> and a list <code>F</code> of polynomials in <code>P</code>, one can compute the reduced SAGBI basis of <math>K</math>[<code>F</code>] (with respect to the term ordering given by <code>P</code>) using the function [[/SB.SAGBI/]] - as long as a finite one exists.
+
 
 +
[[/MinQuotIdeal/]]
 +
<pre>
 +
MinQuotIdeal(P, I, J): computes a min. homog. system
 +
          of generators of homog. ideal (I+J)/I.
 +
    input: P=K[x[1..N]], I and J homog. ideals of P
 +
    output: list of polys
 +
</pre>
 +
[[/AffineNoetherDiff/]]
 +
<pre>
 +
AffineNoetherDiff(P, I): computes a generating system";
 +
          of the Noether different of algebra R/K, R=P/I";
 +
    input: P=K[x[1..N]], I an ideal of P";
 +
    output: list of polys";
 +
</pre>
 +
[[/NoetherDifferent/]]
 
<pre>
 
<pre>
SB.SAGBI(F);
+
NoetherDifferent(P, I): computes a min.homog. gen. system
 +
          of the Noether different of algebra R/K, R=P/I.
 +
    input: P=K[x[1..N]], I an homog. ideal of P
 +
    output: list of polys
 
</pre>
 
</pre>
Note that this function probably runs into an infinite loop if no finite SAGBI basis exists. This can be avoided using the function [[/SB.SAGBITimeout/]]. Given a positive integer <code>s</code>, one can type in
+
[[/NoetherDifferentRel/]]
 
<pre>
 
<pre>
SB.SAGBITimeout(F,s);
+
NoetherDifferentRel(P, Ix): computes a min.homog. gen. system
 +
          of the Noether different of R/K[x[0]], R=P/Ix.
 +
    input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
 +
            in P^n_K such that intersect(X,Z(x[0])) is empty
 +
    output: list of polys
 
</pre>
 
</pre>
which does the same as <code>SB.SAGBI(F)</code>, but throws an error if the computation is not finished within <code>s</code> seconds.
+
[[/HilbertNoetherDiff/]]
Given a polynomial <code>f</code> and a list of polynomials <code>G</code>, the function [[/SB.ReductionStep/]] can be used to compute a polynomial <code>g</code> with <code>f</code><math>{\xrightarrow{G}}_{\rm s}</math><code>g</code>.
 
 
<pre>
 
<pre>
SB.ReductionStep(f,G);
+
HilbertNoetherDiff(P, I): computes the Hilbert function
 +
          of the Noether different of R/K, R=P/I.
 +
    input: P=K[x[1..N]], I an homog. ideal of P
 +
    output: the Hilbert function
 
</pre>
 
</pre>
If no such polynomial exists, then <code>f</code> is returned. This function is then used by the function [[/SB.SDA/]], which is an implementation of the Subalgebra Division Algorithm described above.
+
[[/HilbertNoetherDiffRel/]]
<pre>SB.SDA(f,G)</pre>
 
Analogously to the CoCoA-5 function <code>interreduced</code>, the SAGBI package contains the function [[/SB.Interreduced/]] which takes as input a list of polynomials <code>G</code> and returns a list <code>G'</code> with <math>K[G] = K[G']</math>.
 
 
<pre>
 
<pre>
SB.Interreduced(G);
+
HilbertNoetherDiffRel(P, Ix): computes the Hilbert function
 +
          of the Noether different of R/K[x[0]], R=P/Ix.
 +
    input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
 +
            in P^n_K such that intersect(X,Z(x[0])) is empty
 +
    output: the Hilbert function
 
</pre>
 
</pre>
 
+
[[/AffineKaehlerDiff/]]
=== Special Functions for Graded Subalgebras ===
+
<pre>
If <code>G</code> is a set of [[HowTo:Gradings|homogeneous]] polynomials, then there are additional functions one can use. Given a positive integer<code>d</code>, a <code>d</code>-truncated SAGBI basis can be computed using [[/SB.TruncSAGBI/]].
+
AffineKaehlerDiff(P,I,m): computes a generating system
 +
          of the m-th Kaehler different of algebra R/K, R=P/I.
 +
    input: P=K[x[1..N]], I an ideal of P, m non-neg integer
 +
    output: list of polys
 +
</pre>
 +
[[/KaehlerDifferent/]]
 +
<pre>
 +
KaehlerDifferent(P,I,m): computes a min.homog.gen. system
 +
          of the m-th Kaehler different of algebra R/K, R=P/I.
 +
    input: P=K[x[1..N]], I an homog. ideal, m non-neg integer
 +
    output: list of polys
 +
</pre>
 +
[[/KaehlerDifferentRel/]]
 +
<pre>
 +
KaehlerDifferentRel(P, Ix): computes a min. homog.gen. system
 +
          of the Kaehler different of R/K[x[0]], R=P/Ix.
 +
    input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
 +
            in P^n_K such that intersect(X,Z(x[0])) is empty
 +
    output: list of polys
 +
</pre>
 +
[[/HilbertKaehlerDiff/]]
 +
<pre>
 +
HilbertKaehlerDiff(P,I,m): computes the Hilbert function
 +
          of the m-th Kaehler different of R/K, R=P/I.
 +
    input: P=K[x[1..N]], I an homog. ideal, m non-neg integer
 +
    output: the Hilbert function
 +
</pre>
 +
[[/HilbertKaehlerDiffRel/]]
 +
<pre>
 +
HilbertKaehlerDiffRel(P, Ix): computes the Hilbert function
 +
          of the Kaehler different of R/K[x[0]], R=P/Ix.
 +
    input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
 +
            in P^n_K such that intersect(X,Z(x[0])) is empty
 +
    output: the Hilbert function
 +
</pre>
 +
[[/AffBMAlgo/]]
 +
<pre>
 +
AffBMAlgo(LX,O): computes a list [GBasis,OrderIdeal,Separators]
 +
          for a 0-dim ideal with its primary components LX.
 +
    input: P=K[x[1..N]], LX list of 0-dim primary ideals
 +
            q_j associated to a 0-dim ideal of P
 +
            O list of K-bases of P/q_j
 +
    output: [GBasis,OrderIdeal,Separators] of P/intersection(q_j)
 +
</pre>
 +
[[/DedekindDifferentRel/]]
 +
<pre>
 +
DedekindDifferentRel(P,Points): computes a min.homog.gen. system
 +
          of the Dedekind different of R/K[x[0]], where R=P/Ix
 +
          and Ix is the vanishing ideal of Points.
 +
    input: P=K[x[0..N]], Points=list of points in P^n_K
 +
            not in Z(x[0])
 +
    output: list of polys
 +
</pre>
 +
[[/HilbertDedekindDiffRel/]]
 +
<pre>
 +
HilbertDedekindDiffRel(P,Points): computes the Hilbert function
 +
          of the Dedekind different of R/K[x[0]], where R=P/Ix
 +
          and Ix is the vanishing ideal of Points.
 +
    input: P=K[x[0..N]], Points=list of points in P^n_K
 +
            not in Z(x[0])
 +
    output: the Hilbert function
 +
</pre>
 +
[[/KaehlerDiffModule/]]
 +
<pre>
 +
KaehlerDiffModule(P, Ix, m): computes a submodule U of P^t
 +
          such that the module of Kaehler differential m-form
 +
          has Omega^m(R/K)=P^t/U, R=P/Ix, t=binom{n}{m}.
 +
    input: P=K[x[1..N]], Ix a non-zero ideal, m non-neg integer
 +
    output: submodule with generators
 +
</pre>
 +
[[/HilbertKDM/]]
 
<pre>
 
<pre>
SB.TruncSAGBI(G,d);
+
HilbertKDM(P, Ix, m): computes the Hilbert function of
 +
          the module of Kaehler differential m-form.
 +
    input: P=K[x[1..N]], Ix a non-zero homog. ideal, 0<m<n+1
 +
    output: HF of Omega^m(R/K)
 
</pre>
 
</pre>
If additionally, the Hilbert series <code>HS</code> of the subalgebra <math>K[G]</math> is given, one can call
+
[[/KDMOfPoints/]]
 
<pre>
 
<pre>
SB.TruncSAGBI(G,d,HS);
+
KDMOfPoints(P,Points,m): computes a submodule U of P^t such that
 +
          the module of Kaehler differential m-form has
 +
          Omega^m(R/K)=P^t/U, R=P/I_Points, t=binom{n}{m}.
 +
    input: P=K[x[1..N]], Points=list of points, m non-neg integer
 +
    output: submodule with generators
 
</pre>
 
</pre>
which does the same as above, but computes the SAGBI basis Hilbert-driven, which may be a little bit faster.
+
[[/KDMOfProjectivePoints/]]
The function [[/SB.SubalgebraHS/]] can be applied to compute the Hilbert series of a graded subalgebra.
 
 
<pre>
 
<pre>
SB.SubalgebraHS(G);
+
KDMOfProjectivePoints(P,Points,m): computes a submodule U of P^t
 +
          such that the module of Kaehler differential m-form has
 +
          Omega^m(R/K)=P^t/U, R=P/I_Points, t=binom{n}{m}.
 +
    input: P=K[x[1..N]], Points=list of projective points,
 +
            m non-neg integer
 +
    output: submodule with generators
 
</pre>
 
</pre>
If furthermore <code>G</code> is a set of terms, then the function
+
[[/KDMRel/]]
 
<pre>
 
<pre>
SB.TorRingHS(G);
+
KDMRel(P, Ix, m): computes a submodule U of P^t such that
 +
          the module of Kaehler differential m-form of R/K[x[0]]
 +
          has Omega^m(R/K[x[0]])=P^t/U, R=P/Ix, t=binom{n}{m}.
 +
    input: P=K[x[0..N]], Ix a non-zero homog. ideal such that
 +
            K[x[0]] is the Noetherian normalization of R,
 +
            m non-neg integer
 +
    output: submodule with generators
 
</pre>
 
</pre>
can be used to compute its Hilbert series much more efficient.
+
[[/HilbertKDMRel/]]
 
 
=== The Subalgebra Data Type ===
 
The package also introduces a new ''Data type'', i.e. a record tagged with <code>"$apcocoa/sagbi.Subalgebra"</code>. Given a polynomial ring <code>P</code> and a list of polynomials <code>G</code> from <code>P</code>, one can create the subalgebra <math>K[G]</math> using the function [[/SB.Subalgebra/]].
 
 
<pre>
 
<pre>
Use P ::= QQ[x,y,z];
+
HilbertKDMRel(P, Ix, m): computes the Hilbert function of
G := [x^2+y*z,z];
+
          the module of Kaehler differential m-form of R/K[x[0]].
S := SB.Subalgebra(P,G);
+
    input: P=K[x[0..N]], Ix a non-zero homog. ideal such that
 +
            K[x[0]] is the Noetherian normalization of R,
 +
            m non-neg integer";
 +
    output: HF of Omega^m(R/K[x_0])
 
</pre>
 
</pre>
For details about the structure of this data type, see the function page.
 
While nearly all functionalities of the SAGBI package can be used without touching this data type, it has many advantages to do so because it stores informations of previous computations, see the example below. This is also the reason why many of the getter functions need the subalgebra to be called by reference.
 
The following getter function can be used to get informations about the subalgebra:
 
[[/SB.GetCoeffRing/]](S); -- returns the coefficient ring
 
[[/SB.GetGens/]](S); -- returns the set G
 
[[/SB.GetID/]](S); -- returns the unique ID of S
 
[[/SB.GetLTSA/]](ref S); -- returns the subalgebra K[LT(f) | f in S]
 
[[/SB.GetRing/]](S); -- returns P
 
[[/SB.GetSAGBI/]](ref S); -- returns the reduced SAGBI basis of S (if a finite one exists)
 
  
If additionally, <code>G</code> is a set of homogeneous polynomials, one can call the following getter functions:
+
=== Examples for computations ===
[[/SB.GetHS/]](ref S); -- returns the Hilbert Series of S
+
Now let us apply the <code>zerodim</code> package to some concrete examples. Recall that the alias of the package is <code>ZD</code>, and so to call a function from this package in computation one uses [[/ZD.functions-name/]].
[[/SB.GetTruncSAGBI/]](ref S,d); -- returns a d-truncated SAGBI basis of S
 
[[/SB.GetTruncDeg/]](S); -- returns the truncation degree of the currently stored SAGBI basis
 
To optain a <math>K</math>-vector space basis of the set <math>K[G]_d</math> of all homogeneous polynomials of degree <math>d</math> in <math>K[G]</math>, the function [[/SB.GetInDeg/]] can be used:
 
[[/SB.GetInDeg/]](S);
 
  
=== Testing Subalgebra Membership ===
+
Consider the first example, where X is the scheme defined by the homogeneous ideal Ix.
Let <code>f</code> be a polynomial in the polynomial ring <code>P</code>, let <code>G</code> be a list of polynomials in <code>P</code> and let <code>S</code> be a subalgebra generated by <code>G</code>. Then the SAGBI package provides four functions to check whether <code>f</code> is an element of the subalgebra <code>S</code>:
+
<pre>
  [[/SB.IsInSubalgebra/]](f,G);
+
Use P ::= QQ[X[0..2]];
  [[/SB.IsInSA/]](f,S);
+
Ix := ideal(X[0]*X[1] -X[1]^2, X[1]^2*X[2] -X[1]*X[2]^2, 2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3);
If <code>G</code> is a list of homogeneous polynomials, the following functions can also be used:
+
</pre>
[[/SB.IsInSubalgebra_SAGBI/]](f,G);
+
Then we calculate the differents of X as follows:
[[/SB.IsInSA_SAGBI/]](f,ref S);
+
<pre>
While the first two functions test the membership using implicitization, these two functions use truncated SAGBI bases for the membership test, which ''may'' be more efficient. It depends on the application which of these two possibilities is the fastest one.
+
-- Computes the Noether different of R/K:
 +
ZD.NoetherDifferent(P,Ix);
 +
  []
 +
-- Computes the Noether different of R/K[x_0]:
 +
ZD.NoetherDifferentRel(P,Ix);
 +
  [X[1]^3 -2*X[1]*X[2]^2, 2*X[0]^3 -6*X[0]*X[2]^2 -2*X[1]*X[2]^2 +3*X[2]^3,  X[2]^4]
 +
-- Computes the Hilbert function of the Noether different of R/K[x_0]:
 +
ZD.HilbertNoetherDiffRel(P,Ix);
 +
  H(0) = 0
 +
  H(1) = 0
 +
  H(2) = 0
 +
  H(3) = 2
 +
  H(t) = 5, for t >= 4
 +
-- Computes the Kaehler different of R/K[x_0]:
 +
ZD.KaehlerDifferentRel(P,Ix);
 +
  [X[1]^3 -2*X[1]*X[2]^2, 2*X[0]^3 -6*X[0]*X[2]^2 -2*X[1]*X[2]^2 +3*X[2]^3,  X[2]^4]
 +
-- Computes the Hilbert function of the Kaehler different of R/K[x_0]:
 +
ZD.HilbertKaehlerDiffRel(P,Ix);
 +
  H(0) = 0
 +
  H(1) = 0
 +
  H(2) = 0
 +
  H(3) = 2
 +
  H(t) = 5, for t >= 4
 +
</pre>
 +
The module of Kaehler differentials 1-forms of R/K is determined by a submodule U of P^3 which is computed by:
 +
<pre>
 +
U := ZD.KaehlerDiffModule(P,Ix,1); indent(U);
 +
  SubmoduleRows(F, matrix([
 +
    [X[1], X[0] -2*X[1], 0],
 +
    [0, 2*X[1]*X[2] -X[2]^2, X[1]^2 -2*X[1]*X[2]],
 +
    [4*X[0]*X[2] -3*X[2]^2, 0, 2*X[0]^2 -6*X[0]*X[2] +3*X[2]^2],
 +
    [X[0]*X[1] -X[1]^2, 0, 0],
 +
    [2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3, 0, 0],
 +
    [0, X[0]*X[1] -X[1]^2, 0],
 +
    [0, 2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3, 0],
 +
    [0, 0, X[0]*X[1] -X[1]^2],
 +
    [0, 0, X[1]^2*X[2] -X[1]*X[2]^2],
 +
    [0, 0, 2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3]
 +
  ]))
 +
</pre>
  
=== Example for the Subalgebra Data Type ===
+
Next, let us consider the example, where X is given by a set of 10 points:
So what advantages does the Subalgebra data type have? Consider the following example.
 
 
<pre>
 
<pre>
Use P ::= QQ[x,y,z];
+
Use P::=QQ[X[0..2]];
G := [x^2 -z^2,  x*y +z^2,  y^2 -2*z^2];
+
Points := [[1,1,0], [1,3,0], [1,1,1], [1,2,1], [1,3,1], [1,0,2], [1,1,2], [1,2,2], [1,3,2], [1,3,3]];
L := SB.SAGBI(G);
+
</pre>
f := x^10*y^2 +x^6*y^6 -2*x^10*z^2 -5*x^8*y^2*z^2 +6*x^5*y^5*z^2 +10*x^8*z^4 +10*x^6*y^2*z^4 +15*x^4*y^4*z^4 -20*x^6*z^6 -10*x^4*y^2*z^6 +20*x^3*y^3*z^6 +20*x^4*z^8 +20*x^2*y^2*z^8 -10*x^2*z^10 +6*x*y*z^10 -y^2*z^10 +3*z^12;
+
We can compute the Dedekind different of X and its Hilbert function by:
b := SB.IsInSubalgebra(f,G);
+
<pre>
h := SB.SubalgebraHS(G);
+
ZD.DedekindDifferentRel(P,Points);
 +
  [X[2]^6,  X[1]*X[2]^5,  X[0]*X[2]^5X[1]^2*X[2]^4,  X[0]*X[1]*X[2]^4,   
 +
    X[0]^2*X[2]^4,  X[1]^3*X[2]^3,  X[0]*X[1]^2*X[2]^3,  X[1]^6,  X[0]*X[1]^5]
 +
ZD.HilbertDedekindDiffRel(P,Points);
 +
  H(0) = 0
 +
  H(1) = 0
 +
  H(2) = 0
 +
  H(3) = 0
 +
  H(4) = 0
 +
  H(5) = 0
 +
  H(t) = 10, for t >= 6
 +
</pre>
 +
The module of Kaehler differential 3-forms of R/K can be computed by
 +
<pre>
 +
ZD.KDMOfProjectivePoints(P,Points,3);
 +
  submodule(FreeModule(RingWithID(144, "QQ[X[0],X[1],X[2]]"), 1),
 +
    [[(-1/2)*X[0]*X[1]^2 +(-19/27)*X[1]^3 +(-85/18)*X[0]^2*X[2] +(563/27)*X[0]*X[1]*X[2]
 +
      +(85/27)*X[1]^2*X[2] +(-61/3)*X[0]*X[2]^2 +(-301/18)*X[1]*X[2]^2 +(47/3)*X[2]^3],
 +
      [-X[0]^2*X[2] +(3/2)*X[0]*X[2]^2 +(-1/2)*X[2]^3], [-2*X[0]^2*X[1] +4*X[0]*X[1]^2  
 +
      +(-4/3)*X[1]^3 +X[1]^2*X[2] +(-23/6)*X[0]*X[2]^2 +(-4/3)*X[1]*X[2]^2 +(13/6)*X[2]^3],
 +
      [-X[0]^3 +(13/3)*X[0]*X[1]^2 +(-16/9)*X[1]^3 +(11/6)*X[1]^2*X[2] +(-253/36)*X[0]*X[2]^2
 +
      +(-22/9)*X[1]*X[2]^2 +(143/36)*X[2]^3],
 +
      [(40/9)*X[0]*X[1]^2 +(-52/27)*X[1]^3 +X[0]*X[1]*X[2] +(19/9)*X[1]^2*X[2]
 +
      +(-563/54)*X[0]*X[2]^2 +(-85/27)*X[1]*X[2]^2 +(301/54)*X[2]^3],
 +
      [2*X[0]*X[1]*X[2] -2*X[0]*X[2]^2 +(-3/2)*X[1]*X[2]^2 +(3/2)*X[2]^3],
 +
      [3*X[0]^2*X[2] +(-11/3)*X[0]*X[2]^2 +X[2]^3],
 +
      [2*X[0]*X[1]^2 +(-4/3)*X[1]^3 -2*X[0]*X[2]^2 +(23/6)*X[1]*X[2]^2 +(-5/2)*X[2]^3],
 +
      [3*X[0]^2*X[1] +(-13/9)*X[1]^3 +(-11/3)*X[0]*X[2]^2 +(253/36)*X[1]*X[2]^2 +(-55/12)*X[2]^3],
 +
      [4*X[0]^3 +(-40/27)*X[1]^3 +(-1/2)*X[1]^2*X[2] +(-85/18)*X[0]*X[2]^2 +(563/54)*X[1]*X[2]^2 +(-61/9)*X[2]^3]
 +
    ])
 
</pre>
 
</pre>
  
While this is only a simple example, the second code is much faster. At the time this is written, the second computation is approximately two times as fast as the first one.
+
[[Category:Package zerodim]]
 
+
[[Category:Package alggeozd]]
[[Category:Package sagbi]]
+
[[Category:Package borderbasis]]
 
[[Category:ApCoCoA Packages]]
 
[[Category:ApCoCoA Packages]]

Latest revision as of 23:25, 17 November 2022

This article is about a function from ApCoCoA-2. If you are looking for the ApCoCoA-1 version of it, see Category:ApCoCoA-1:Package ZeroDim.

This page describes the zerodim package. The package contains various functions for computing algebraic invariants of zero-dimensional schemes and related computations. For a complete list of functions, see also Category:Package zerodim.


Algebraic Invariants

Let be a field, let be the polynomial ring over in indeterminates, and let be a 0-dimensional ideal of and . Then defines a 0-dimensional scheme in the affine -space. Consider the canonical multiplication map

and its kernel . Then is a finitely generated -module and is an ideal of the enveloping algebra .

  • The ideal is called the Noether different of the algebra .
  • The -module is called the module of Kaehler differential 1-forms of the algebra .
  • The -linear map , is called the universal derivation of the algebra .
  • For , the exterior power is called the module of Kaehler differential m-forms of the algebra .
  • For the -th Fitting ideal of the module of Kaehler differential 1-forms is called the Kaehler different of the algebra .

More generally, for any -algebra , we can define the Noether different, module of Kaehler differential m-forms, Kaehler different of analogously. In particular, if is graded, then all these invariants are also graded.

Now let us embed the scheme in the projective -space via , where is a new indeterminate. Set and equip with the standard grading. The homogeneous vanishing ideal of is the homogenization of with respect to and denoted by , and the homogeneous coordinate ring of is the graded 1-dimensional ring . In this case is the Noetherian normalization of , and hence we can define the above invariants for the graded algebra . Moreover, we have the following further invariants.

  • The graded -module is called the canonical module of the algebra .
  • The graded locolization of at is called the homogeneous ring of quotients of .
  • When the scheme is reduced (more general, locally Gorenstein), there is an injection and the inverse of in is called the Dedekind different of .

Many interesting properties of the scheme are reflexed by the algebraic structure of the above invariants.

Package Description

The zerodim package provides functions for computing the introduced invariants of zero-dimensional schemes. In the graded case the package also provides functions for computations of the Hilbert functions of these invariants. Alias of the package is ZD.

List of main functions

MinQuotIdeal

MinQuotIdeal(P, I, J): computes a min. homog. system
          of generators of homog. ideal (I+J)/I.
     input: P=K[x[1..N]], I and J homog. ideals of P
     output: list of polys

AffineNoetherDiff

AffineNoetherDiff(P, I): computes a generating system";
          of the Noether different of algebra R/K, R=P/I";
     input: P=K[x[1..N]], I an ideal of P";
     output: list of polys";

NoetherDifferent

NoetherDifferent(P, I): computes a min.homog. gen. system
          of the Noether different of algebra R/K, R=P/I.
     input: P=K[x[1..N]], I an homog. ideal of P
     output: list of polys

NoetherDifferentRel

NoetherDifferentRel(P, Ix): computes a min.homog. gen. system
          of the Noether different of R/K[x[0]], R=P/Ix.
     input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
            in P^n_K such that intersect(X,Z(x[0])) is empty
     output: list of polys

HilbertNoetherDiff

HilbertNoetherDiff(P, I): computes the Hilbert function
          of the Noether different of R/K, R=P/I.
     input: P=K[x[1..N]], I an homog. ideal of P
     output: the Hilbert function

HilbertNoetherDiffRel

HilbertNoetherDiffRel(P, Ix): computes the Hilbert function
          of the Noether different of R/K[x[0]], R=P/Ix.
     input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
            in P^n_K such that intersect(X,Z(x[0])) is empty
     output: the Hilbert function

AffineKaehlerDiff

AffineKaehlerDiff(P,I,m): computes a generating system
          of the m-th Kaehler different of algebra R/K, R=P/I.
     input: P=K[x[1..N]], I an ideal of P, m non-neg integer
     output: list of polys

KaehlerDifferent

KaehlerDifferent(P,I,m): computes a min.homog.gen. system
          of the m-th Kaehler different of algebra R/K, R=P/I.
     input: P=K[x[1..N]], I an homog. ideal, m non-neg integer
     output: list of polys

KaehlerDifferentRel

KaehlerDifferentRel(P, Ix): computes a min. homog.gen. system
          of the Kaehler different of R/K[x[0]], R=P/Ix.
     input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
            in P^n_K such that intersect(X,Z(x[0])) is empty
     output: list of polys

HilbertKaehlerDiff

HilbertKaehlerDiff(P,I,m): computes the Hilbert function
          of the m-th Kaehler different of R/K, R=P/I.
     input: P=K[x[1..N]], I an homog. ideal, m non-neg integer
     output: the Hilbert function

HilbertKaehlerDiffRel

HilbertKaehlerDiffRel(P, Ix): computes the Hilbert function
          of the Kaehler different of R/K[x[0]], R=P/Ix.
     input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
             in P^n_K such that intersect(X,Z(x[0])) is empty
     output: the Hilbert function

AffBMAlgo

AffBMAlgo(LX,O): computes a list [GBasis,OrderIdeal,Separators]
          for a 0-dim ideal with its primary components LX.
     input: P=K[x[1..N]], LX list of 0-dim primary ideals
            q_j associated to a 0-dim ideal of P
            O list of K-bases of P/q_j
     output: [GBasis,OrderIdeal,Separators] of P/intersection(q_j)

DedekindDifferentRel

DedekindDifferentRel(P,Points): computes a min.homog.gen. system
          of the Dedekind different of R/K[x[0]], where R=P/Ix
          and Ix is the vanishing ideal of Points.
     input: P=K[x[0..N]], Points=list of points in P^n_K
            not in Z(x[0])
     output: list of polys

HilbertDedekindDiffRel

HilbertDedekindDiffRel(P,Points): computes the Hilbert function
          of the Dedekind different of R/K[x[0]], where R=P/Ix
          and Ix is the vanishing ideal of Points.
     input: P=K[x[0..N]], Points=list of points in P^n_K
            not in Z(x[0])
     output: the Hilbert function

KaehlerDiffModule

KaehlerDiffModule(P, Ix, m): computes a submodule U of P^t
          such that the module of Kaehler differential m-form
          has Omega^m(R/K)=P^t/U, R=P/Ix, t=binom{n}{m}.
     input: P=K[x[1..N]], Ix a non-zero ideal, m non-neg integer
     output: submodule with generators

HilbertKDM

HilbertKDM(P, Ix, m): computes the Hilbert function of
          the module of Kaehler differential m-form.
     input: P=K[x[1..N]], Ix a non-zero homog. ideal, 0<m<n+1
     output: HF of Omega^m(R/K)

KDMOfPoints

KDMOfPoints(P,Points,m): computes a submodule U of P^t such that
          the module of Kaehler differential m-form has
          Omega^m(R/K)=P^t/U, R=P/I_Points, t=binom{n}{m}.
     input: P=K[x[1..N]], Points=list of points, m non-neg integer
     output: submodule with generators

KDMOfProjectivePoints

KDMOfProjectivePoints(P,Points,m): computes a submodule U of P^t
          such that the module of Kaehler differential m-form has
          Omega^m(R/K)=P^t/U, R=P/I_Points, t=binom{n}{m}.
     input: P=K[x[1..N]], Points=list of projective points,
            m non-neg integer
     output: submodule with generators

KDMRel

KDMRel(P, Ix, m): computes a submodule U of P^t such that
          the module of Kaehler differential m-form of R/K[x[0]]
          has Omega^m(R/K[x[0]])=P^t/U, R=P/Ix, t=binom{n}{m}.
     input: P=K[x[0..N]], Ix a non-zero homog. ideal such that
            K[x[0]] is the Noetherian normalization of R,
            m non-neg integer
     output: submodule with generators

HilbertKDMRel

HilbertKDMRel(P, Ix, m): computes the Hilbert function of
          the module of Kaehler differential m-form of R/K[x[0]].
     input: P=K[x[0..N]], Ix a non-zero homog. ideal such that
            K[x[0]] is the Noetherian normalization of R,
            m non-neg integer";
     output: HF of Omega^m(R/K[x_0])

Examples for computations

Now let us apply the zerodim package to some concrete examples. Recall that the alias of the package is ZD, and so to call a function from this package in computation one uses ZD.functions-name.

Consider the first example, where X is the scheme defined by the homogeneous ideal Ix.

Use P ::= QQ[X[0..2]];
Ix := ideal(X[0]*X[1] -X[1]^2, X[1]^2*X[2] -X[1]*X[2]^2, 2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3);

Then we calculate the differents of X as follows:

-- Computes the Noether different of R/K:
ZD.NoetherDifferent(P,Ix); 
   []
-- Computes the Noether different of R/K[x_0]:
ZD.NoetherDifferentRel(P,Ix); 
   [X[1]^3 -2*X[1]*X[2]^2,  2*X[0]^3 -6*X[0]*X[2]^2 -2*X[1]*X[2]^2 +3*X[2]^3,  X[2]^4]
-- Computes the Hilbert function of the Noether different of R/K[x_0]:
ZD.HilbertNoetherDiffRel(P,Ix);
   H(0) = 0
   H(1) = 0
   H(2) = 0
   H(3) = 2
   H(t) = 5, for t >= 4
-- Computes the Kaehler different of R/K[x_0]:
ZD.KaehlerDifferentRel(P,Ix);
   [X[1]^3 -2*X[1]*X[2]^2,  2*X[0]^3 -6*X[0]*X[2]^2 -2*X[1]*X[2]^2 +3*X[2]^3,  X[2]^4]
-- Computes the Hilbert function of the Kaehler different of R/K[x_0]:
ZD.HilbertKaehlerDiffRel(P,Ix);
   H(0) = 0
   H(1) = 0
   H(2) = 0
   H(3) = 2
   H(t) = 5, for t >= 4

The module of Kaehler differentials 1-forms of R/K is determined by a submodule U of P^3 which is computed by:

U := ZD.KaehlerDiffModule(P,Ix,1); indent(U);
   SubmoduleRows(F, matrix([
     [X[1], X[0] -2*X[1], 0],
     [0, 2*X[1]*X[2] -X[2]^2, X[1]^2 -2*X[1]*X[2]],
     [4*X[0]*X[2] -3*X[2]^2, 0, 2*X[0]^2 -6*X[0]*X[2] +3*X[2]^2],
     [X[0]*X[1] -X[1]^2, 0, 0],
     [2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3, 0, 0],
     [0, X[0]*X[1] -X[1]^2, 0],
     [0, 2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3, 0],
     [0, 0, X[0]*X[1] -X[1]^2],
     [0, 0, X[1]^2*X[2] -X[1]*X[2]^2],
     [0, 0, 2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3]
   ]))

Next, let us consider the example, where X is given by a set of 10 points:

Use P::=QQ[X[0..2]];
Points := [[1,1,0], [1,3,0], [1,1,1], [1,2,1], [1,3,1], [1,0,2], [1,1,2], [1,2,2], [1,3,2], [1,3,3]];

We can compute the Dedekind different of X and its Hilbert function by:

ZD.DedekindDifferentRel(P,Points);
   [X[2]^6,  X[1]*X[2]^5,  X[0]*X[2]^5,  X[1]^2*X[2]^4,  X[0]*X[1]*X[2]^4,  
    X[0]^2*X[2]^4,  X[1]^3*X[2]^3,  X[0]*X[1]^2*X[2]^3,  X[1]^6,  X[0]*X[1]^5]
ZD.HilbertDedekindDiffRel(P,Points);
   H(0) = 0
   H(1) = 0
   H(2) = 0
   H(3) = 0
   H(4) = 0
   H(5) = 0
   H(t) = 10, for t >= 6

The module of Kaehler differential 3-forms of R/K can be computed by

ZD.KDMOfProjectivePoints(P,Points,3);
   submodule(FreeModule(RingWithID(144, "QQ[X[0],X[1],X[2]]"), 1), 
     [[(-1/2)*X[0]*X[1]^2 +(-19/27)*X[1]^3 +(-85/18)*X[0]^2*X[2] +(563/27)*X[0]*X[1]*X[2] 
       +(85/27)*X[1]^2*X[2] +(-61/3)*X[0]*X[2]^2 +(-301/18)*X[1]*X[2]^2 +(47/3)*X[2]^3], 
      [-X[0]^2*X[2] +(3/2)*X[0]*X[2]^2 +(-1/2)*X[2]^3], [-2*X[0]^2*X[1] +4*X[0]*X[1]^2 
       +(-4/3)*X[1]^3 +X[1]^2*X[2] +(-23/6)*X[0]*X[2]^2 +(-4/3)*X[1]*X[2]^2 +(13/6)*X[2]^3], 
      [-X[0]^3 +(13/3)*X[0]*X[1]^2 +(-16/9)*X[1]^3 +(11/6)*X[1]^2*X[2] +(-253/36)*X[0]*X[2]^2 
       +(-22/9)*X[1]*X[2]^2 +(143/36)*X[2]^3], 
      [(40/9)*X[0]*X[1]^2 +(-52/27)*X[1]^3 +X[0]*X[1]*X[2] +(19/9)*X[1]^2*X[2] 
       +(-563/54)*X[0]*X[2]^2 +(-85/27)*X[1]*X[2]^2 +(301/54)*X[2]^3], 
      [2*X[0]*X[1]*X[2] -2*X[0]*X[2]^2 +(-3/2)*X[1]*X[2]^2 +(3/2)*X[2]^3], 
      [3*X[0]^2*X[2] +(-11/3)*X[0]*X[2]^2 +X[2]^3], 
      [2*X[0]*X[1]^2 +(-4/3)*X[1]^3 -2*X[0]*X[2]^2 +(23/6)*X[1]*X[2]^2 +(-5/2)*X[2]^3], 
      [3*X[0]^2*X[1] +(-13/9)*X[1]^3 +(-11/3)*X[0]*X[2]^2 +(253/36)*X[1]*X[2]^2 +(-55/12)*X[2]^3], 
      [4*X[0]^3 +(-40/27)*X[1]^3 +(-1/2)*X[1]^2*X[2] +(-85/18)*X[0]*X[2]^2 +(563/54)*X[1]*X[2]^2 +(-61/9)*X[2]^3]
     ])