Difference between revisions of "ApCoCoA-1:Weyl.WPower"
From ApCoCoAWiki
m (replaced <quotes> tag by real quotes) |
|||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>Weyl.WPower</title> | <title>Weyl.WPower</title> | ||
− | <short_description>Computes the N-th power of a Weyl polynomial.</short_description> | + | <short_description>Computes the <tt>N</tt>-th power of a Weyl polynomial.</short_description> |
<syntax> | <syntax> | ||
Weyl.WPower(F:POLY,N:INT):POLY | Weyl.WPower(F:POLY,N:INT):POLY | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Computes the | + | Computes the <tt>N</tt>-th of a Weyl polynomial <tt>F</tt>. |
<itemize> | <itemize> | ||
<item>@param <em>F</em> A Weyl polynomial in normal form.</item> | <item>@param <em>F</em> A Weyl polynomial in normal form.</item> | ||
<item>@param <em>N</em> A positive integer, power to be calculated.</item> | <item>@param <em>N</em> A positive integer, power to be calculated.</item> | ||
− | <item>@result A Weyl polynomial F^N in Normal form.</item> | + | <item>@result A Weyl polynomial <tt>F^N</tt> in Normal form.</item> |
</itemize> | </itemize> | ||
Line 46: | Line 47: | ||
<types> | <types> | ||
− | <type> | + | <type>polynomial</type> |
</types> | </types> | ||
− | <wiki-category>Package_weyl</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_weyl</wiki-category> |
</command> | </command> |
Latest revision as of 13:50, 29 October 2020
This article is about a function from ApCoCoA-1. |
Weyl.WPower
Computes the N-th power of a Weyl polynomial.
Syntax
Weyl.WPower(F:POLY,N:INT):POLY
Description
Computes the N-th of a Weyl polynomial F.
@param F A Weyl polynomial in normal form.
@param N A positive integer, power to be calculated.
@result A Weyl polynomial F^N in Normal form.
Example
A2::=QQ[x[1..2],y[1..2]]; --Define appropriate ring Use A2; F1:=x[1]^2x[2] - y[1]^3 + 3x[2]y[2] - 4; Weyl.WPower(F1,0); 1 ------------------------------- Weyl.WPower(F1,1); x[1]^2x[2] - y[1]^3 + 3x[2]y[2] - 4 ------------------------------- Weyl.WPower(F1,2); x[1]^4x[2]^2 - 2x[1]^2x[2]y[1]^3 + y[1]^6 + 6x[1]^2x[2]^2y[2] - 6x[2]y[1]^3y[2] - 6x[1]x[2]y[1]^2 + 9x[2]^2y[2]^2 - 5x[1]^2x[2] + 8y[1]^3 - 6x[2]y[1] - 15x[2]y[2] + 16 ------------------------------- Weyl.WPower(F1,3); x[1]^6x[2]^3 - 3x[1]^4x[2]^2y[1]^3 + 3x[1]^2x[2]y[1]^6 - y[1]^9 + 9x[1]^4x[2]^3y[2] - 18x[1]^2x[2]^2y[1]^3y[2] + 9x[2]y[1]^6y[2] - 18x[1]^3x[2]^2y[1]^2 + 18x[1]x[2]y[1]^5 + 27x[1]^2x[2]^3y[2]^2 - 27x[2]^2y[1]^3y[2]^2 - 3x[1]^4x[2]^2 + 15x[1]^2x[2]y[1]^3 - 12y[1]^6 - 54x[1]x[2]^2y[1]^2y[2] + 27x[2]^3y[2]^3 - 42x[1]^2x[2]^2y[1] + 36x[2]y[1]^4 - 18x[1]^2x[2]^2y[2] + 45x[2]y[1]^3y[2] + 36x[1]x[2]y[1]^2 - 54x[2]^2y[1]y[2] - 27x[2]^2y[2]^2 + 21x[1]^2x[2] - 24x[1]x[2]^2 - 48y[1]^3 + 36x[2]y[1] + 63x[2]y[2] - 64 ------------------------------- Weyl.WPower(F1,-3); ERROR: 2nd Parameter should be a positive integer CONTEXT: Error("2nd Parameter should be a positive integer") -------------------------------