Difference between revisions of "ApCoCoA-1:Weyl.WMulByMonom"

From ApCoCoAWiki
m (replaced <quotes> tag by real quotes)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
   <command>
+
   {{Version|1}}
 +
<command>
 
     <title>Weyl.WMulByMonom</title>
 
     <title>Weyl.WMulByMonom</title>
     <short_description>Computes the product M*F of Weyl monomial M and a Weyl polynomial F in normal form.</short_description>
+
     <short_description>Computes the product <tt>M*F</tt> of a Weyl monomial <tt>M</tt> and a Weyl polynomial <tt>F</tt> in normal form.</short_description>
 
<syntax>
 
<syntax>
 
Weyl.WMulByMonom(M:POLY,F:POLY):POLY
 
Weyl.WMulByMonom(M:POLY,F:POLY):POLY
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
This function multiplies a Weyl monomial M with a polynomials F and returns M*F as a Weyl polynomial in normal form.
+
This function multiplies a Weyl monomial <tt>M</tt> with a polynomial <tt>F</tt> and returns <tt>M*F</tt> as a Weyl polynomial in normal form.
  
 
<itemize>
 
<itemize>
 
<item>@param <em>M</em> A Weyl monomial.</item>
 
<item>@param <em>M</em> A Weyl monomial.</item>
 
<item>@param <em>F</em> A Weyl polynomial.</item>
 
<item>@param <em>F</em> A Weyl polynomial.</item>
<item>@return The product M*F, a Weyl polynomial in normal form.</item>
+
<item>@return The product <tt>M*F</tt>, a Weyl polynomial in normal form.</item>
 
</itemize>
 
</itemize>
  
<em>Note:</em> Monomials and polynomials that are not in normal form should be first converted into normal form using <ref>Weyl.WNormalForm</ref>, otherwise you may get unexpected results.
+
<em>Note:</em> Monomials and polynomials that are not in normal form should be first converted into normal form using <ref>ApCoCoA-1:Weyl.WNormalForm|Weyl.WNormalForm</ref>, otherwise you may get unexpected results.
  
 
<example>
 
<example>
Line 25: Line 26:
 
Weyl.WMulByMonom(F,M); -- note the input
 
Weyl.WMulByMonom(F,M); -- note the input
 
ERROR: 1st parameter should be a Monomial!
 
ERROR: 1st parameter should be a Monomial!
CONTEXT: Error(<quotes>1st parameter should be a Monomial!</quotes>)
+
CONTEXT: Error("1st parameter should be a Monomial!")
 
-------------------------------
 
-------------------------------
 
</example>
 
</example>
 
   </description>
 
   </description>
 
     <seealso>
 
     <seealso>
       <see>Weyl.WNormalForm</see>
+
       <see>ApCoCoA-1:Weyl.WNormalForm|Weyl.WNormalForm</see>
       <see>Weyl.WMul</see>
+
       <see>ApCoCoA-1:Weyl.WMul|Weyl.WMul</see>
 
     </seealso>
 
     </seealso>
 
     <types>
 
     <types>
Line 38: Line 39:
 
     <key>weyl.wmulbymonom</key>
 
     <key>weyl.wmulbymonom</key>
 
     <key>wmulbymonom</key>
 
     <key>wmulbymonom</key>
     <wiki-category>Package_weyl</wiki-category>
+
     <wiki-category>ApCoCoA-1:Package_weyl</wiki-category>
 
   </command>
 
   </command>

Latest revision as of 13:50, 29 October 2020

This article is about a function from ApCoCoA-1.

Weyl.WMulByMonom

Computes the product M*F of a Weyl monomial M and a Weyl polynomial F in normal form.

Syntax

Weyl.WMulByMonom(M:POLY,F:POLY):POLY

Description

This function multiplies a Weyl monomial M with a polynomial F and returns M*F as a Weyl polynomial in normal form.

  • @param M A Weyl monomial.

  • @param F A Weyl polynomial.

  • @return The product M*F, a Weyl polynomial in normal form.

Note: Monomials and polynomials that are not in normal form should be first converted into normal form using Weyl.WNormalForm, otherwise you may get unexpected results.

Example

A1::=QQ[x,d];	--Define appropriate ring
Use A1;
M:=x^3d^4; F:=x^3+d^3+3xd+5;
Weyl.WMulByMonom(M,F);
x^6d^4 + x^3d^7 + 3x^4d^5 + 12x^5d^3 + 17x^3d^4 + 36x^4d^2 + 24x^3d
-------------------------------
Weyl.WMulByMonom(F,M); -- note the input
ERROR: 1st parameter should be a Monomial!
CONTEXT: Error("1st parameter should be a Monomial!")
-------------------------------

See also

Weyl.WNormalForm

Weyl.WMul