Difference between revisions of "ApCoCoA-1:Weyl.WMulByMonom"
From ApCoCoAWiki
m (fixed links to namespace ApCoCoA) |
m (replaced <quotes> tag by real quotes) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <command> | + | {{Version|1}} |
+ | <command> | ||
<title>Weyl.WMulByMonom</title> | <title>Weyl.WMulByMonom</title> | ||
<short_description>Computes the product <tt>M*F</tt> of a Weyl monomial <tt>M</tt> and a Weyl polynomial <tt>F</tt> in normal form.</short_description> | <short_description>Computes the product <tt>M*F</tt> of a Weyl monomial <tt>M</tt> and a Weyl polynomial <tt>F</tt> in normal form.</short_description> | ||
Line 25: | Line 26: | ||
Weyl.WMulByMonom(F,M); -- note the input | Weyl.WMulByMonom(F,M); -- note the input | ||
ERROR: 1st parameter should be a Monomial! | ERROR: 1st parameter should be a Monomial! | ||
− | CONTEXT: Error( | + | CONTEXT: Error("1st parameter should be a Monomial!") |
------------------------------- | ------------------------------- | ||
</example> | </example> |
Latest revision as of 13:50, 29 October 2020
This article is about a function from ApCoCoA-1. |
Weyl.WMulByMonom
Computes the product M*F of a Weyl monomial M and a Weyl polynomial F in normal form.
Syntax
Weyl.WMulByMonom(M:POLY,F:POLY):POLY
Description
This function multiplies a Weyl monomial M with a polynomial F and returns M*F as a Weyl polynomial in normal form.
@param M A Weyl monomial.
@param F A Weyl polynomial.
@return The product M*F, a Weyl polynomial in normal form.
Note: Monomials and polynomials that are not in normal form should be first converted into normal form using Weyl.WNormalForm, otherwise you may get unexpected results.
Example
A1::=QQ[x,d]; --Define appropriate ring Use A1; M:=x^3d^4; F:=x^3+d^3+3xd+5; Weyl.WMulByMonom(M,F); x^6d^4 + x^3d^7 + 3x^4d^5 + 12x^5d^3 + 17x^3d^4 + 36x^4d^2 + 24x^3d ------------------------------- Weyl.WMulByMonom(F,M); -- note the input ERROR: 1st parameter should be a Monomial! CONTEXT: Error("1st parameter should be a Monomial!") -------------------------------
See also