Difference between revisions of "ApCoCoA-1:Num.QR"
From ApCoCoAWiki
m (Bot: Category moved) |
m (replaced <quotes> tag by real quotes) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <command> | + | {{Version|1}} |
+ | <command> | ||
<title>Num.QR</title> | <title>Num.QR</title> | ||
<short_description>Computes the QR-decomposition of a matrix.</short_description> | <short_description>Computes the QR-decomposition of a matrix.</short_description> | ||
Line 23: | Line 24: | ||
------------------------------- | ------------------------------- | ||
Mat([ | Mat([ | ||
− | [ | + | ["0.999", "1.999", "2.999"], |
− | [ | + | ["1.999", "2.999", "3.999"], |
− | [ | + | ["2.999", "3.999", "4.999"] |
]) | ]) | ||
------------------------------- | ------------------------------- | ||
Line 31: | Line 32: | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
− | <see>Num.SVD</see> | + | <see>ApCoCoA-1:Num.SVD|Num.SVD</see> |
− | <see>Num.EigenValues</see> | + | <see>ApCoCoA-1:Num.EigenValues|Num.EigenValues</see> |
− | <see>Num.EigenValuesAndVectors</see> | + | <see>ApCoCoA-1:Num.EigenValuesAndVectors|Num.EigenValuesAndVectors</see> |
− | <see>Num.EigenValuesAndAllVectors</see> | + | <see>ApCoCoA-1:Num.EigenValuesAndAllVectors|Num.EigenValuesAndAllVectors</see> |
</seealso> | </seealso> | ||
<types> | <types> |
Latest revision as of 13:48, 29 October 2020
This article is about a function from ApCoCoA-1. |
Num.QR
Computes the QR-decomposition of a matrix.
Syntax
Num.QR(A:MAT):[Q:MAT,R:MAT]
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This command computes the QR-decomposition of a matrix using the external library Lapack, i.e. the matrix A will be decomposed into the product of an orthogonal matrix Q and an upper-right triangular matrix R.
@param A The matrix to decompose.
@return An orthogonal matrix Q and an upper-right triangular matrix R such that Q*R=A.
Example
Points:=Mat([[1,2,3],[2,3,4],[3,4,5]]); QR := Num.QR(Points); Dec(QR[1]*QR[2],3); -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Mat([ ["0.999", "1.999", "2.999"], ["1.999", "2.999", "3.999"], ["2.999", "3.999", "4.999"] ]) -------------------------------
See also