Difference between revisions of "ApCoCoA-1:Num.ProjectAVI"

From ApCoCoAWiki
m (replaced <quotes> tag by real quotes)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
   <command>
+
   {{Version|1}}
 +
<command>
 
     <title>Num.ProjectAVI</title>
 
     <title>Num.ProjectAVI</title>
 
     <short_description>Computes the least squares solution of the general problem <tt>Ax=b</tt>, where <tt>x</tt> are coefficients of an order ideal.</short_description>
 
     <short_description>Computes the least squares solution of the general problem <tt>Ax=b</tt>, where <tt>x</tt> are coefficients of an order ideal.</short_description>
Line 22: Line 23:
 
-- CoCoAServer: computing Cpu Time = 0
 
-- CoCoAServer: computing Cpu Time = 0
 
-------------------------------
 
-------------------------------
[<quotes>-0.99 x +1 y </quotes>]
+
["-0.99 x +1 y "]
 
-------------------------------
 
-------------------------------
 
</example>
 
</example>
 
     </description>
 
     </description>
 
     <seealso>
 
     <seealso>
       <see>Introduction to CoCoAServer</see>
+
       <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see>
 
     </seealso>
 
     </seealso>
 
     <types>
 
     <types>
Line 36: Line 37:
 
     <key>ProjectAVI</key>
 
     <key>ProjectAVI</key>
 
     <key>numerical.projectavi</key>
 
     <key>numerical.projectavi</key>
     <wiki-category>Package_numerical</wiki-category>
+
     <wiki-category>ApCoCoA-1:Package_numerical</wiki-category>
 
   </command>
 
   </command>

Latest revision as of 13:47, 29 October 2020

This article is about a function from ApCoCoA-1.

Num.ProjectAVI

Computes the least squares solution of the general problem Ax=b, where x are coefficients of an order ideal.

Syntax

Num.ProjectAVI(Mat:MAT, Vec:MAT, OI:LIST):POLY

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

This command computes the least squares solution of the general problem Ax=b, if there is no exact solution. The solution x has to be interpreted as the coefficients of the terms in the order ideal.

  • @param Mat Matrix A

  • @param Vec Vector B as a matrix.

  • @param OI Order Ideal

  • @return The least squares solution of Ax=b interpreted as coefficients of OI.


Example

Dec(Num.ProjectAVI([[1,1],[0,1],[1,1]],[[0],[1],[0]],[x,y]),2);
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
["-0.99 x +1 y "]
-------------------------------

See also

Introduction to CoCoAServer