Difference between revisions of "ApCoCoA-1:Num.DABM"

From ApCoCoAWiki
(New page: <command> <title>Num.DABM</title> <short_description>In a differential setting, computes the border basis of an almost vanishing ideal for a set of points using the ABM algorithm.</shor...)
 
m (replaced <quotes> tag by real quotes)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
 
   <title>Num.DABM</title>
 
   <title>Num.DABM</title>
Line 4: Line 5:
 
<short_description>In a differential setting, computes the border basis of an almost vanishing ideal for a set of points using the ABM algorithm.</short_description>
 
<short_description>In a differential setting, computes the border basis of an almost vanishing ideal for a set of points using the ABM algorithm.</short_description>
 
<syntax>
 
<syntax>
DABM(Points:MAT, GoUpToOrder:INT, Epsilon:RAT, Nl:INT, Nr:INT, Deg:INT)
+
DABM(Points:MAT, GoUpToOrder:INT, Epsilon:RAT, Nl:INT, Nr:INT, Deg:INT, CopyReplace:STRING, DoSavGol:INT)
  
 
</syntax>
 
</syntax>
Line 17: Line 18:
 
The matrix <tt>Points</tt> contains the data points: each
 
The matrix <tt>Points</tt> contains the data points: each
 
point is a row in the matrix, so the number of columns must equal the
 
point is a row in the matrix, so the number of columns must equal the
number of indeterminates, namely NumOfIndets, in the current ring. The number of rows must be greater than Nl+Nr (again, because of the Savitzky-Golay filter).
+
number of indeterminates, namely NumOfIndets, in the current ring. The number of rows must be greater than <tt>Nl+Nr</tt> (again, because of the Savitzky-Golay filter).
  
 
<itemize>
 
<itemize>
Line 25: Line 26:
 
<item>@param <em>Nl</em> Number of left data points to be considered by the Savitzky-Golay filter.</item>
 
<item>@param <em>Nl</em> Number of left data points to be considered by the Savitzky-Golay filter.</item>
 
<item>@param <em>Nr</em> Number of right data points to be considered by the Savitzky-Golay filter.</item>
 
<item>@param <em>Nr</em> Number of right data points to be considered by the Savitzky-Golay filter.</item>
<item>@param <em>Deg</em> Maximum degree of the interpolation polynomial used by Savitzky-Golay filter. Must be greater or equal MaxOrd.</item>
+
<item>@param <em>Deg</em> Maximum degree of the interpolation polynomial used by Savitzky-Golay filter. Must be greater or equal MaxOrd.
 
+
</item>
 +
<item>@param <em>CopyReplace</em> Only meaningful, if DoSavGol = 1. Is either <tt>c</tt> or <tt>r</tt>. Use <tt>c</tt> to include (copy) the original time series into the result. Use <tt>r</tt> to replace the original time series by the filtered results from Savitzky-Golay.</item>
 +
<item>@param <em>DoSavGol</em> Either 0 or 1. Use 0 if the given Points already contain the numerical derivatives up to the required order. Use 1 if the Savitzky-Golay method should be applied to the given Points.</item>
 
<item>@return The border basis as a list of polynomials.</item>
 
<item>@return The border basis as a list of polynomials.</item>
 
</itemize>
 
</itemize>
Line 40: Line 43:
 
Deg := 4;
 
Deg := 4;
  
GoUpToOrder:=2;
+
GoUpToOrder := 2;
  
 
Epsilon:=0.1;
 
Epsilon:=0.1;
 +
 +
CopyReplace := "c";
 +
DoSavGol := 1;
  
 
-- Data is given by [[cos(I), sin(I)] | I In 1..35].
 
-- Data is given by [[cos(I), sin(I)] | I In 1..35].
Line 55: Line 61:
  
  
Result:=Num.DABM(Points, GoUpToOrder, Epsilon, Nl, Nr, Deg);
+
Result:=Num.DABM(Points, GoUpToOrder, Epsilon, Nl, Nr, Deg, CopyReplace, DoSavGol);
 
Foreach X In Result Do
 
Foreach X In Result Do
 
   PrintLn Dec(X,2);   
 
   PrintLn Dec(X,2);   
 
EndForeach;
 
EndForeach;
  
-------------------------------
+
-- (Result) --
-- CoCoAServer: computing Cpu Time = 0.1423
+
 
-------------------------------
+
1 x[1,1] +0.99 x[2,0] -0.00 x[1,0] +0.00   
0.70 x[1,1] +0.70 x[2,0] -0.00 x[1,0] +0.00   
+
1 x[2,1] +0.00 x[2,0] -0.99 x[1,0] +0.00   
0.70 x[2,1] +0.00 x[2,0] -0.70 x[1,0] +0.00   
 
 
[...]
 
[...]
  
Line 71: Line 76:
  
 
     <seealso>
 
     <seealso>
       <see>Introduction to CoCoAServer</see>
+
       <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see>
       <see>Num.ABM</see>
+
       <see>ApCoCoA-1:Num.ABM|Num.ABM</see>
 +
      <see>ApCoCoA-1:Num.CABM|Num.CABM</see>
 +
      <see>ApCoCoA-1:Num.BBABM|Num.BBABM</see>
 
     </seealso>
 
     </seealso>
 
     <types>
 
     <types>
Line 78: Line 85:
 
       <type>points</type>
 
       <type>points</type>
 
     </types>
 
     </types>
     <key>ABM</key>
+
     <key>DABM</key>
 
     <key>Num.DABM</key>
 
     <key>Num.DABM</key>
 
     <key>numerical.DABM</key>
 
     <key>numerical.DABM</key>
     <wiki-category>Package_numerical</wiki-category>
+
     <wiki-category>ApCoCoA-1:Package_numerical</wiki-category>
 
   </command>
 
   </command>

Latest revision as of 13:46, 29 October 2020

This article is about a function from ApCoCoA-1.

Num.DABM

In a differential setting, computes the border basis of an almost vanishing ideal for a set of points using the ABM algorithm.

Syntax

DABM(Points:MAT, GoUpToOrder:INT, Epsilon:RAT, Nl:INT, Nr:INT, Deg:INT, CopyReplace:STRING, DoSavGol:INT)

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

This command computes a differential border basis of an almost vanishing ideal for a set of points.

The current ring has to be a polynomial ring over the rational numbers with a standard-degree

compatible term-ordering. The indeterminates have to be given as x[1..NumOfIndets,0..MaxOrd], where MaxOrd is the maximal order which should be considered by the algorithm, i.e., the order up to which derivative values are computed by the Savitzky-Golay filter involved.

The matrix Points contains the data points: each point is a row in the matrix, so the number of columns must equal the number of indeterminates, namely NumOfIndets, in the current ring. The number of rows must be greater than Nl+Nr (again, because of the Savitzky-Golay filter).

  • @param Points The points for which a border basis is computed.

  • @param GoUpToOrder The order up to which derivatives are taken to construct the model polynomials. It must be between 0 and the maximal differential order MaxOrd in the definition of the current ring.

  • @param Epsilon A positive rational number describing the maximal admissible least squares error for a polynomial. (Bigger values for Epsilon lead to bigger errors of the polynomials evaluated at the point set). Epsilon should be in the interval (0,1). As a rule of thumb, Epsilon is the expected percentage of error on the input points.

  • @param Nl Number of left data points to be considered by the Savitzky-Golay filter.

  • @param Nr Number of right data points to be considered by the Savitzky-Golay filter.

  • @param Deg Maximum degree of the interpolation polynomial used by Savitzky-Golay filter. Must be greater or equal MaxOrd.

  • @param CopyReplace Only meaningful, if DoSavGol = 1. Is either c or r. Use c to include (copy) the original time series into the result. Use r to replace the original time series by the filtered results from Savitzky-Golay.

  • @param DoSavGol Either 0 or 1. Use 0 if the given Points already contain the numerical derivatives up to the required order. Use 1 if the Savitzky-Golay method should be applied to the given Points.

  • @return The border basis as a list of polynomials.


Example

Use Q[x[1..2,0..3]];
Use Q[x[1..2,0..3]], Ord(DA.DiffTO("Ord"));


Nl := 2;
Nr := 2;
Deg := 4;

GoUpToOrder := 2;

Epsilon:=0.1;

CopyReplace := "c";
DoSavGol := 1;

-- Data is given by [[cos(I), sin(I)] | I In 1..35].
Points := Mat([[0.540302, 0.841471], [-0.416147, 0.909297], [-0.989992, 0.14112], [-0.653644, -0.756802], [0.283662, -0.958924],
               [0.96017, -0.279415], [0.753902, 0.656987], [-0.1455, 0.989358], [-0.91113, 0.412118], [-0.839072, -0.544021],
               [0.0044257, -0.99999], [0.843854, -0.536573], [0.907447, 0.420167], [0.136737, 0.990607], [-0.759688, 0.650288],
               [-0.957659, -0.287903], [-0.275163, -0.961397], [0.660317, -0.750987], [0.988705, 0.149877], [0.408082, 0.912945],
               [-0.547729, 0.836656], [-0.999961, -0.00885131], [-0.532833, -0.84622], [0.424179, -0.905578], [0.991203, -0.132352],
               [0.646919, 0.762558], [-0.292139, 0.956376], [-0.962606, 0.270906], [-0.748058, -0.663634], [0.154251, -0.988032],
               [0.914742, -0.404038], [0.834223, 0.551427], [-0.0132767, 0.999912], [-0.84857, 0.529083], [-0.903692, -0.428183]
               ]);


Result:=Num.DABM(Points, GoUpToOrder, Epsilon, Nl, Nr, Deg, CopyReplace, DoSavGol);
Foreach X In Result Do
  PrintLn Dec(X,2);  
EndForeach;

-- (Result) --

1 x[1,1] +0.99 x[2,0] -0.00 x[1,0] +0.00  
1 x[2,1] +0.00 x[2,0] -0.99 x[1,0] +0.00  
[...]

See also

Introduction to CoCoAServer

Num.ABM

Num.CABM

Num.BBABM