Difference between revisions of "ApCoCoA-1:Num.AVI"
(Examples with LT 1.) |
m (replaced <quotes> tag by real quotes) |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <command> | + | {{Version|1}} |
+ | <command> | ||
<title>Num.AVI</title> | <title>Num.AVI</title> | ||
<short_description>Computes a border basis of an almost vanishing ideal for a set of points.</short_description> | <short_description>Computes a border basis of an almost vanishing ideal for a set of points.</short_description> | ||
<syntax> | <syntax> | ||
− | Num.AVI(Points:MAT, | + | Num.AVI(Points:MAT, Epsilon:RAT):Object |
− | Num.AVI(Points:MAT, | + | Num.AVI(Points:MAT, Epsilon:RAT, Delta:RAT, ForbiddenTerms:LIST, NormalizeType:INT):Object |
</syntax> | </syntax> | ||
Line 10: | Line 11: | ||
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | ||
<par/> | <par/> | ||
− | This function computes an approximate border basis of an almost vanishing ideal for a set of points using the AVI algorithm. AVI is an acronym of | + | This function computes an approximate border basis of an almost vanishing ideal for a set of points using the AVI algorithm. AVI is an acronym of "Approximate Vanishing Ideal". |
<par/> | <par/> | ||
The current ring has to be a ring over the rational numbers with a standard-degree | The current ring has to be a ring over the rational numbers with a standard-degree | ||
Line 20: | Line 21: | ||
<item>@param <em>Points</em> The points for which a border basis is computed.</item> | <item>@param <em>Points</em> The points for which a border basis is computed.</item> | ||
− | <item>@param <em> | + | <item>@param <em>Epsilon</em> A positive rational number describing which singular values should be treated as 0 (smaller values for <tt>Epsilon</tt> lead to bigger errors of the polynomials evaluated at the point set). <tt>Epsilon</tt> should be in the interval (0,1). As a rule of thumb, <tt>Epsilon</tt> is the expected percentage of error on the input points. </item> |
<item>@return A list of two results. First the border basis as a list of polynomials, second the vector space basis of <tt>P/I</tt> as a list of terms.</item> | <item>@return A list of two results. First the border basis as a list of polynomials, second the vector space basis of <tt>P/I</tt> as a list of terms.</item> | ||
Line 29: | Line 30: | ||
<item>@param <em>Delta</em> A positive rational number. <tt>Delta</tt> describes the computing precision. In different steps, it is crucial, if a value is 0 or not. The algorithm assumes every value in <tt>[-Delta, Delta]</tt> to be 0. The default value for <tt>Delta</tt> is 0.00000000001.</item> | <item>@param <em>Delta</em> A positive rational number. <tt>Delta</tt> describes the computing precision. In different steps, it is crucial, if a value is 0 or not. The algorithm assumes every value in <tt>[-Delta, Delta]</tt> to be 0. The default value for <tt>Delta</tt> is 0.00000000001.</item> | ||
− | <item>@param <em> | + | <item>@param <em>ForbiddenTerms</em> A list containing the terms which are not allowed to show up in the order ideal.</item> |
− | <item>@param <em> | + | <item>@param <em>NormalizeType</em> A integer of the range 1..4. The default value is 2. This parameter describes, if/how the input points are normalized. If <tt>NormalizeType</tt> equals 1, each coordinate is divided by the maximal absolute value of the corresponding column of the matrix. This ensures that all coordinates of points are in [-1,1]. With <tt>NormalizeType=2</tt> no normalization is done at all. <tt>NormalizeType=3</tt> shifts each coordinate to [-1,1]. So it's minimum is mapped to -1 and the maximum to one, describing a unique affine mapping. The last option is <tt>NormalizeType=4</tt>. In this case, each coordinate is normalized, using the column's euclidian norm.</item> |
− | |||
− | |||
− | |||
</itemize> | </itemize> | ||
Line 51: | Line 49: | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
− | <see>Num.SubAVI</see> | + | <see>ApCoCoA-1:Num.SubAVI|Num.SubAVI</see> |
</seealso> | </seealso> | ||
<types> | <types> | ||
Line 61: | Line 59: | ||
<key>AVI</key> | <key>AVI</key> | ||
<key>num.avi</key> | <key>num.avi</key> | ||
− | <wiki-category>Package_numerical</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_numerical</wiki-category> |
</command> | </command> |
Latest revision as of 13:45, 29 October 2020
This article is about a function from ApCoCoA-1. |
Num.AVI
Computes a border basis of an almost vanishing ideal for a set of points.
Syntax
Num.AVI(Points:MAT, Epsilon:RAT):Object Num.AVI(Points:MAT, Epsilon:RAT, Delta:RAT, ForbiddenTerms:LIST, NormalizeType:INT):Object
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function computes an approximate border basis of an almost vanishing ideal for a set of points using the AVI algorithm. AVI is an acronym of "Approximate Vanishing Ideal".
The current ring has to be a ring over the rational numbers with a standard-degree
compatible term-ordering. The matrix Points contains the points: each
point is a row in the matrix, so the number of columns must equal the number of indeterminates in the current ring.
@param Points The points for which a border basis is computed.
@param Epsilon A positive rational number describing which singular values should be treated as 0 (smaller values for Epsilon lead to bigger errors of the polynomials evaluated at the point set). Epsilon should be in the interval (0,1). As a rule of thumb, Epsilon is the expected percentage of error on the input points.
@return A list of two results. First the border basis as a list of polynomials, second the vector space basis of P/I as a list of terms.
The following parameters are optional:
@param Delta A positive rational number. Delta describes the computing precision. In different steps, it is crucial, if a value is 0 or not. The algorithm assumes every value in [-Delta, Delta] to be 0. The default value for Delta is 0.00000000001.
@param ForbiddenTerms A list containing the terms which are not allowed to show up in the order ideal.
@param NormalizeType A integer of the range 1..4. The default value is 2. This parameter describes, if/how the input points are normalized. If NormalizeType equals 1, each coordinate is divided by the maximal absolute value of the corresponding column of the matrix. This ensures that all coordinates of points are in [-1,1]. With NormalizeType=2 no normalization is done at all. NormalizeType=3 shifts each coordinate to [-1,1]. So it's minimum is mapped to -1 and the maximum to one, describing a unique affine mapping. The last option is NormalizeType=4. In this case, each coordinate is normalized, using the column's euclidian norm.
Example
Use P::=QQ[x,y,z]; Points := Mat([[1,0,0],[0,0,1],[0,1,0]]); Num.AVI(Points,0.001); -- CoCoAServer: computing Cpu Time = 0 ------------------------------- [[x + y + 4503599627370495/4503599627370496z - 4503599627370497/4503599627370496, xy, y^2 - y, xz, yz, z^2 - z], [1, z, y]] ------------------------------- -------------------------------
See also