Difference between revisions of "ApCoCoA-1:NCo.BMB"
m (replaced <quotes> tag by real quotes) |
|||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>NCo.BMB</title> | <title>NCo.BMB</title> | ||
<short_description> | <short_description> | ||
Enumerate a Macauley's basis of a finitely generated algebra over the binary field F_{2}={0,1}. | Enumerate a Macauley's basis of a finitely generated algebra over the binary field F_{2}={0,1}. | ||
− | |||
− | |||
</short_description> | </short_description> | ||
<syntax> | <syntax> | ||
Line 10: | Line 9: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
+ | Given a two-sided ideal <tt>I</tt> in a free monoid ring <tt>F_{2}<X></tt>, we can consider the <tt>F_{2}</tt>-algebra <tt>F_{2}<X>/I</tt> as a <tt>F_{2}</tt>-vector space. Moreover, let <tt>G</tt> be a Groebner basis of <tt>I</tt>, and let <tt>B</tt> be the set of all words which are not a multiple of any word in the leading word set <tt>BLW{G}</tt>. Then the residue class of the words in <tt>B</tt> form a <tt>F_{2}</tt>-basis, called a <em>Macaulay's basis</em>, of <tt>F_{2}<X>/I</tt>. For the sake of computing the values of the Hilbert function (see <ref>ApCoCoA-1:NCo.BHF|NCo.BHF</ref>) of <tt>F_{2}<X>/I</tt>, in this function we require that <tt>G</tt> has to be a Groebner basis with respect to a length compatible word ordering (see <ref>ApCoCoA-1:NCo.SetOrdering|NCo.SetOrdering</ref>). | ||
+ | <par/> | ||
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | ||
<par/> | <par/> | ||
− | Please set ring environment <em>alphabet</em> (or set of indeterminates) <tt>X</tt> and <em>word ordering</em> via the functions <ref>NCo.SetX</ref> and <ref>NCo.SetOrdering</ref>, respectively, before calling this function. The default ordering is the length-lexicographic ordering ( | + | Please set ring environment <em>alphabet</em> (or set of indeterminates) <tt>X</tt> and <em>word ordering</em> via the functions <ref>ApCoCoA-1:NCo.SetX|NCo.SetX</ref> and <ref>ApCoCoA-1:NCo.SetOrdering|NCo.SetOrdering</ref>, respectively, before calling this function. The default ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions. |
<itemize> | <itemize> | ||
− | <item>@param <em>Gb:</em> a LIST of non-zero polynomials in the free monoid ring <tt>F_{2}<X></tt> which is a Groebner basis with respect to a length compatible word ordering. Each polynomial is represented as a LIST of words (or terms) in <tt><X></tt>. Each word is represented as a STRING. For example, <tt>xy^2x</tt> is represented as | + | <item>@param <em>Gb:</em> a LIST of non-zero polynomials in the free monoid ring <tt>F_{2}<X></tt> which is a Groebner basis with respect to a length compatible word ordering. Each polynomial is represented as a LIST of words (or terms) in <tt><X></tt>. Each word is represented as a STRING. For example, <tt>xy^2x</tt> is represented as "xyyx", and the identity is represented as the empty string "". Thus, the polynomial <tt>f=xy-y+1</tt> is represented as F:=["xy", "y", ""]. The zero polynomial <tt>0</tt> is represented as the empty LIST []. <em>Warning:</em> users should take responsibility to make sure that Gb is indeed a Groebner basis with respect to a length compatible word ordering! In the case that Gb is a partical Groebner basis, the function enumerates a pseudo basis.</item> |
<item>@return: a LIST of words forming a Macaulay's basis of the <tt>F_{2}</tt>-algebra <tt>F_{2}<X>/<Gb></tt>.</item> | <item>@return: a LIST of words forming a Macaulay's basis of the <tt>F_{2}</tt>-algebra <tt>F_{2}<X>/<Gb></tt>.</item> | ||
Line 23: | Line 24: | ||
</itemize> | </itemize> | ||
<example> | <example> | ||
− | NCo.SetX( | + | NCo.SetX("xyzt"); |
− | NCo.SetOrdering( | + | NCo.SetOrdering("LLEX"); |
− | GB:= [[ | + | GB:= [["yt", "ty"], ["xt", "tx"], ["xy", "ty"], [ "xx", "yx"], |
− | [ | + | ["tyy", "tty"], ["yyx", "tyx"]]; |
NCo.BMB(GB,3); | NCo.BMB(GB,3); | ||
− | [[ | + | [[""], ["t", "z", "y", "x"], ["tt", "tz", "ty", "tx", "zt", "zz", "zy", "zx", "yz", "yy", "yx", "xz"], |
− | [ | + | ["ttt", "ttz", "tty", "ttx", "tzt", "tzz", "tzy", "tzx", "tyz", "tyx", "txz", "ztt", "ztz", "zty", "ztx", |
− | + | "zzt", "zzz", "zzy", "zzx", "zyz", "zyy", "zyx", "zxz", "yzt", "yzz", "yzy", "yzx", "yyz", "yyy", "yxz", | |
− | + | "xzt", "xzz", "xzy", "xzx"]] | |
------------------------------- | ------------------------------- | ||
</example> | </example> | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>NCo.BHF</see> | + | <see>ApCoCoA-1:NCo.BHF|NCo.BHF</see> |
− | <see>NCo.BIsGB</see> | + | <see>ApCoCoA-1:NCo.BIsGB|NCo.BIsGB</see> |
− | <see>NCo.BLW</see> | + | <see>ApCoCoA-1:NCo.BLW|NCo.BLW</see> |
− | <see>NCo.SetOrdering</see> | + | <see>ApCoCoA-1:NCo.SetOrdering|NCo.SetOrdering</see> |
− | <see>NCo.SetX</see> | + | <see>ApCoCoA-1:NCo.SetX|NCo.SetX</see> |
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
</seealso> | </seealso> | ||
<types> | <types> | ||
Line 52: | Line 53: | ||
<key>NCo.BMB</key> | <key>NCo.BMB</key> | ||
<key>BMB</key> | <key>BMB</key> | ||
− | <wiki-category>Package_gbmr</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_gbmr</wiki-category> |
</command> | </command> |
Latest revision as of 13:38, 29 October 2020
This article is about a function from ApCoCoA-1. |
NCo.BMB
Enumerate a Macauley's basis of a finitely generated algebra over the binary field F_{2}={0,1}.
Syntax
NCo.BMB(Gb:LIST[, DB:INT]):LIST
Description
Given a two-sided ideal I in a free monoid ring F_{2}<X>, we can consider the F_{2}-algebra F_{2}<X>/I as a F_{2}-vector space. Moreover, let G be a Groebner basis of I, and let B be the set of all words which are not a multiple of any word in the leading word set BLW{G}. Then the residue class of the words in B form a F_{2}-basis, called a Macaulay's basis, of F_{2}<X>/I. For the sake of computing the values of the Hilbert function (see NCo.BHF) of F_{2}<X>/I, in this function we require that G has to be a Groebner basis with respect to a length compatible word ordering (see NCo.SetOrdering).
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Please set ring environment alphabet (or set of indeterminates) X and word ordering via the functions NCo.SetX and NCo.SetOrdering, respectively, before calling this function. The default ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.
@param Gb: a LIST of non-zero polynomials in the free monoid ring F_{2}<X> which is a Groebner basis with respect to a length compatible word ordering. Each polynomial is represented as a LIST of words (or terms) in <X>. Each word is represented as a STRING. For example, xy^2x is represented as "xyyx", and the identity is represented as the empty string "". Thus, the polynomial f=xy-y+1 is represented as F:=["xy", "y", ""]. The zero polynomial 0 is represented as the empty LIST []. Warning: users should take responsibility to make sure that Gb is indeed a Groebner basis with respect to a length compatible word ordering! In the case that Gb is a partical Groebner basis, the function enumerates a pseudo basis.
@return: a LIST of words forming a Macaulay's basis of the F_{2}-algebra F_{2}<X>/<Gb>.
Optional parameter:
@param DB: a positive INT which is a degree bound of the lengths of words. Note that we set DB=32 by default. Thus, in the case that F_{2}<X>/<Gb> has a finite Macaulay's basis, it is necessary to set DB to a large enough INT in order to compute the whole Macaulay's basis.
Example
NCo.SetX("xyzt"); NCo.SetOrdering("LLEX"); GB:= [["yt", "ty"], ["xt", "tx"], ["xy", "ty"], [ "xx", "yx"], ["tyy", "tty"], ["yyx", "tyx"]]; NCo.BMB(GB,3); [[""], ["t", "z", "y", "x"], ["tt", "tz", "ty", "tx", "zt", "zz", "zy", "zx", "yz", "yy", "yx", "xz"], ["ttt", "ttz", "tty", "ttx", "tzt", "tzz", "tzy", "tzx", "tyz", "tyx", "txz", "ztt", "ztz", "zty", "ztx", "zzt", "zzz", "zzy", "zzx", "zyz", "zyy", "zyx", "zxz", "yzt", "yzz", "yzy", "yzx", "yyz", "yyy", "yxz", "xzt", "xzz", "xzy", "xzx"]] -------------------------------
See also